
Astrée and the static analysis of reactive
control programs

Laure Gonnord David Monniaux

November 3, 2015

1 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

2 / 51

Astrée

Static analyzer for proving
▶ absence of runtime errors
▶ absence of assertion violations (assert())

Takes C (subset of C) code as input

Output an exhaustive list of possible violations

3 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

4 / 51

General architecture

C source

↓ C lexer and parser

C AST

↓ C typer

C typed/simplified AST

↓ iterator

(optional) printout of invariants
printout of possible errors

5 / 51

Lexing / parsing + typing

▶ C parsing is almost context-free
Almost: handling of typedef

typedef int foo;

extern int in(void);

int main() {
int bar = in();
return (foo)(bar);

}

extern int foo(int);

extern int in(void);

int main() {
int bar = in();
return (foo)(bar);

}

▶ C typing (integer operations and promotions) is
surprisingly tricky

6 / 51

Iterator architecture

syntax-directed iterator

↓

domain of forward jumps (break, continue, goto)

↓

memory domain

↓

numerical domain “interchange”

↓

numerical domains

7 / 51

Forward jumps

Carry on:
▶ a “normal flow” abstract element

▶ break, continue: a stack (one level per loop nesting)

▶ one abstract element per label to which a goto is made

For backward goto, possibility to add a fixed point around (a
bit painful and not needed by most soware).

8 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

9 / 51

Memory model

C memory = “separate” memory blocks

Base pointer (incomparable) + offset

10 / 51

Memory abstraction mk.1 “Java-like”

memory domain = array of cells

each cell = pointer to set of other cells (or invalid), or index of
variable into numerical domain

arrays:
▶ either “smashed” (one single may-alias cell: all writes are

may-writes)
▶ either expanded

kludges when programs to analyze use type aliasing or
pointer arithmetic

11 / 51

Memory model, mk.2

(Antoine Miné, LCTES’06)

Pointer = block identifier + offset (numeric variable)

View each block as an array of bytes

View numeric data as superimposed on this byte array

12 / 51

A practical note on implementation
Several layers of indexed maps (variable → memory domain
cell, memory domain cell → numeric variable)

When control flow splits, two maps that may get altered
differently

In an if-then-else, maps exiting both branches are almost the
same

The cost of merge (⊔) should be counted wrt the number of
updated variables, not the total number of variables.

In large-scale control code (l = number of lines):
▶ total # of variables = Θ(l)
▶ total # of tests = Θ(l)

If “linear cost” of ⊔: total Θ(l2), intolerable.
13 / 51

Data structures

Important: identical sub-parts of partials maps X → Y should
not be traversed (e.g. ⊔ on intervals when most intervals are
identical)

▶ Patricia trees: trees indexed by the binary
decomposition of the index (opportunistic sharing of
sub-trees)

▶ Balanced binary trees (opportunistic sharing of
sub-trees)

▶ Hash-consing?

14 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

15 / 51

Interval Abstract Domain

▶ Classical domain [Cousot & Cousot ’76]

▶ Minimum information needed to check the correctness
conditions;

▶ Not precise enough to express a useful inductive
invariant
(thousands of false alarms);

▶ =⇒ must be refined by:
▶ combining with existing domains through reduced

product,
▶ designing new domains, until all false alarms are

eliminated.

16 / 51

Clock Abstract Domain
Code Sample:

R = 0;
while (1) {
if (I)
{ R = R+1; }

else
{ R = 0; }

T = (R>=n);
wait_for_clock ();

}

▶ Output T is true iff volatile
input I true for last n clock
ticks.

▶ Dlock ticks every s seconds
for at most h hours, thus R
bounded.

▶ To prove that R cannot
overflow, prove that R
cannot exceed the elapsed
clock ticks (impossible using
only intervals).

Solution:
▶ We add a phantom variable clock
▶ For each variable X, we abstract three intervals: X,
X+clock, and X-clock.

▶ If X+clock or X-clock is bounded, so is X.

17 / 51

Octagon Abstract Domain
Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)
{ ⋆ L = Z+V; }

⋆
}

▶ At ⋆, intervals give
L ≤ max(max A, (max
Z)+(max V)).

▶ In fact, we have L ≤ A.

▶ To discover this, we must
know at ⋆ that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.
▶ Octagons a good cost / precision trade-off.
▶ Invariants of the form ± x± y ≤ c, with O(N2) memory

and O(N3) time cost.
▶ Here, R = A-Z cannot be discovered, but we get L-Z ≤ max
R which is sufficient.

▶ We use many octagons on small packs of variables
instead of a large one using all variables to cut costs.

18 / 51

Block diagram

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

19 / 51

Ellipsoids

▶ Computes Xn =

{
αXn−1 + βXn−2 + Yn

In
▶ The concrete computation is bounded, which must be

proved in the abstract.
▶ There is no stable interval or octagon.
▶ The simplest stable surface is an ellipsoid.

X U F(X)

X
F(X)

F(X)
X

X U F(X)

unstable interval stable ellipsoid
20 / 51

Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in
boolean variables.
bool B1,B2,B3;
float N,X,Y;
N = f(B1);
if (B1)
{ X = g(N); }

else
{ Y = h(N); }

Decision Tree:

���
���
���

���
���
���

�
�
�

�
�
�

���
���
���

���
���
���

����
����
����
����

Numerical abstract domains

X
Y

X
Y

X
Y

X
Y

B3

B1

B2

BDD

Too many booleans (4 000) to build one big tree so we:
▶ limit the BDD height to 3 (analysis parameter);
▶ use a syntactic criterion to select variables in the BDD

and the numerical parts.

21 / 51

Relational Domains on Floating-Point

Problems:
▶ Relational numerical abstract domains rely on a perfect

mathematical concrete semantics (in R or Q).
▶ Perfect arithmetics in R or Q is costly.
▶ IEEE 754-1985 floating-point concrete semantics incurs

rounding.

Solution:

▶ Build an abstract mathematical semantics in R that
over-approximates the concrete floating-point semantics,
including rounding.

▶ Implement the abstract domains on R using floating-point
numbers rounded in a sound way.

22 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

23 / 51

Basic iterator: recursive descent

On the syntactic structure of programs (not CFG).

▶ Assignment: forward abstract propagation

▶ Procedure call: recurse into procedure (virtual inlining)

▶ Tests / switches: go into each branch aer filtering by
guard, ⊔ at the end

▶ Loops: fixed point

24 / 51

Iteration Refinement: Loop Unrolling

Principle:

▶ Semantically equivalent to:

while (B) { C } =⇒ if (B) { C }; while
(B) { C }

▶ More precise in the abstract:
▶ less concrete execution paths are merged in the abstract.

Application:

▶ Isolate the initialization phase in a loop (e.g. first
iteration).

25 / 51

Iteration Refinement: Trace Partitioning
Principle:

▶ Semantically equivalent to:
if (B) { C1 } else { C2 }; C3

⇓
if (B) { C1; C3 } else { C2; C3 };

▶ More precise in the abstract:
▶ concrete execution paths are merged later.

Application:

if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

/ cannot result in a division by zero

26 / 51

Convergence Accelerator: Widening
Principle:

▶ Brute-force widening:

▶ Widening with thresholds:

Thresholds

Examples:
▶ 1., 10., 100., 1000., etc. for floating-point variables;
▶ maximal values of data types;
▶ syntactic program constants, etc.

27 / 51

Fixpoint Stabilization for Floating-point

Problem:
▶ Mathematically, we look for an abstract invariant inv

such that F(inv) ⊆ inv.
▶ Unfortunately, abstract computation uses floating-point

and incurs rounding: maybe Fε(inv) ⊈ inv!

Solution:

���
���
���
���
���
���
���

���
���
���
���
���
���
���

attractiveness

rounding
error

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Inv

F εF

ε ’

Inv

▶ Widen inv to invε′ with the
hope to jump into a stable
zone of Fε.

▶ Works if F has some
aractiveness property
(otherwise iteration goes on).

▶ ε′ is an analysis parameter.

28 / 51

Plan

Astrée
Architecture
Memory
Numerical domains
Iteration trickery

Filters

29 / 51

The problem

Discrete-time digital filters implemented in soware
(general-purpose CPUs, DSPs) or in hardware.
A lot of the filtering linear: what we’ll deal with
Implemented in fixed- or floating-point.
Need to provide sound assurance of absence of runtime
errors in the program, including overflows.
Thus need to bound all filter outputs (and all intermediate
values).

30 / 51

Discrete-time causal linear filters

Inputs and outputs streams of data on “wires”
Complex filters made of elementary blocks connected by
wires:

▶ delays (buffer for 1 or more clock tick(s))
▶ multiplication by a scalar
▶ addition of 2 streams

Network topology may contain feedback loops going
through a delay

31 / 51

Example of complex filter

TF2TF2+
E S

delay (2)
feedback

N2N1

×− k

Each TF2 element itself a complex filter with internal filter
feedback loop.

32 / 51

Causal, time-invariant linearity

Causal: values at clock tick n ≥ 0 depend on those at clock
ticks ≥ n only
(Non causal filters typically need entire buffering of the data
— we do not cover them here.)
Linearity: outputs a linear function of the inputs (over the
reals)
⇒ each output at time n a linear function of the inputs at
times ≥ n
Time invariance: this function is always the same
convolution, i.e.

o(n) =
∑
k

t(k)i(n−k)

33 / 51

Transfer function

Several inputs and initial values in the “delay” operators:

o(n) =
∑
x

∑
k

r(k)x i(n−k)
x +

∑
y

kyd(n)y

Define O =
∑∞

n=0 o
(n)zn a formal power series. The equation

becomes
O =

∑
x

Tx.Ix +
∑
y

ky.Dy

ky initial value of delay labeled y;
Ix series for input stream labeled x; Tx unit response for input
x (Z-transform)

34 / 51

Bounding the transfer

We know some bound [−Bx,Bx] on input Ix: ∥Ix∥∞ ≤ Bx.

What is the ∥I 7→ T.I∥ operator norm w.r.t ∥ · ∥∞?
I.e. the least M such that ∥T.I∥∞ ≤ M.∥I∥∞.

Answer: ∥I 7→ T.I∥ = ∥T∥1 with ∥T∥ =
∑

n |tn|.

Then

∥O∥∞ ≤
∑
x

∥Tx∥1.∥Ix∥∞ +

∥∥∥∥∥∑
y

ky.D.y

∥∥∥∥∥
∞

35 / 51

Examples

Multiplication by a scalar: T = α,

Addition: T1 = 1, T2 = 1

Delay: by n clock ticks, T = zn

36 / 51

Feedback loop

delay

filter

feedback

Filter F with two inputs I and L, output L fed back into L
through unit delay (we leave out the initialization):
O = TI.I+ TL.L = TI.I+ TL.zO and thus O = T.I with

T = (1− zTL)−1.TI.I

37 / 51

Rational functions

All the T power series that we construct are the developments
around 0 of rational functions P(z)/Q(z) (P, Q polynomials,
Q(0) = 1) — ring Rz.
If a filter has m inputs I1, …, In, r initialization values k1, …, kr,
and n outputs O1, …, Om, then
T is a n×m matrix over Rz; D is a n× r matrix over Rz;
K is a m-vector of R;
I is a m-vector of Rz[[z]] (series); O is a n-vector of
Rz[[z]] (series) and

O = T.I+ D.K

38 / 51

Feedback loops

Take a filter F (TF, DF…), feedback its n outputs into the last of
its m inputs.
O = TF1.I+ TF2.zO+ D.K and thus

O = (Idn − z.TF2)
−1.(TF1.I+ D.K)

(this matrix is necessarily invertible)
Computations doable over Qz!

39 / 51

Summary

Any of the filters can be summarized by matrices of rational
functions over the rationals.
These matrices can be computed simply from the coefficients
of the various elementary blocks or from the matrices of
whole sub-filters (compositional design).
Example: filter O(n) =

∑d
k=0 αkI(n−k) +

∑e
k=1 βkO(n−k) has

transfer function

α0 + α1z+ · · ·+ αdzd

1− β1z− · · · − βeze

d = e = 2: TF2 filter in our example

40 / 51

Bounding the output

Let Nx apply ∥ · ∥x to all coordinates in a matrix or vector.
Then N∞(O) ≤ N1(T).N∞(I) + N∞(D.K)
The main problem: given a rational function P(z)/Q(z),
Q(0) ̸= 0, give an upper bound on ∥P/Q∥1 (of its
development around 0).
Idea:

▶ compute explicitly the first N terms of this development,
compute a bound for ∥P/Q∥<N

1

▶ bound the tail: ∥P/Q∥≥N
1

41 / 51

Explicit development

Development of P/Q: division by ascending powers of P(z) by
Q(z) (eqv. to running a filter
O(n) =

∑d
k=0 pkI

(n−k) −
∑e

k=1 qkO
(n−k)).

Problem: numerical instability using interval arithmetics
on floating-point numbers.
Aer a while, error on the same order as the coefficients, sign
of the coefficients unknown, then quick amplification.
Solution: develop until sign of the coefficients unknown. (Can
go further with extended-precision arithmetic, see GNU MP’s
MPFR).

42 / 51

Tail bounding

Poles: the zeroes of Q(z) are called poles of P(z)/Q(z)
The poles determine the behavior of the system.
Theorem: system stable (∥P/Q∥1 < ∞) iff all poles have
absolute value > 1
Intuition: (distinct poles) [P(z)/Q(z)](n) =

∑
i αiξ

−n, ξi poles.
Theorem: let R be the remainder of the division by ascending
powers of P/Q up to order N, then

∥P/Q∥≥N
1 ≤ ∥R∥1

(|ξ1| − 1) . . . (|ξn| − 1)

43 / 51

Tail bounding

Implementation: Good algorithms and libraries (GSL…) for
finding approximate roots ξ̃i of polynomial Q
Methods for sound bounds on the error on a root
(|ξ̃i − ξ| ≤ e(Q, ξ̃i))

44 / 51

Decomposition

Let Õ be the output of the filter implemented in fixed- or
floating- point, O the ideal real output, then we obtain for
single input, output, no initialization:

∥Õ− O∥∞ ≤ εrel.∥I∥∞ + εabs

εrel relative error, εabs absolute error.
In general: N∞(Õ− O) ≤ εrel,T.N∞(I) + εrel,D.N∞(K) + εabs
with εrel,T, εrel,D matrices in R+, εabs vector in R+

45 / 51

Error in elementary blocks

x⊕ y in fixed- or floating-point = r(x+ y), x⊗ y in fixed- or
floating-point = r(x.y); r rounding function such that
|r(x)− x| ≤ εrel.|x|+ εabs
Fixed-point: εrel = 0, εabs = u/2 (round-to-nearest), εabs = u
(other modes) with u the least representable positive number
Floating-point: εrel error at the n-th binary position aer the
point
εabs is the denormalization error: ex, if u is the least
representable positive number, then 0.25⊗ u = 0 (εabs very
small, but included for soundness)
|r(x)− x| ≤ max(εrel.|x|, εabs) overapproximated by affine
form

46 / 51

Error propagation

Simple blocks: With the above: easy for addition and
multiplication by scalar, no error on delays
Feedback loop: around filter F: somewhat complex
computation ending up with εrel = A.εrel + B with A with very
small coefficients ⇒ resolution by fixpoint iteration
Simplification: with a P/Q filter (P,Q with rational
coefficients, can be large), replace by P̃/Q̃ (approximations for
P and Q) with some larger εrel

47 / 51

To summarize

Any causal linear filter F with finite memory implemented
over fixed-point or floating-point (or a mix thereo) can be
summarized into:

▶ matrices TF and DF over Qz expressing the ideal, real
input-output relationship by Z-transform: T wrt input
streams, D wrt values initially in the delay memories

▶ matrices εFrel,T and εFabs,D over R+ expressing the relative
errors wrt input streams and delay memories

▶ vector εFabs of absolute error
This is compositional: computation for complex filters from
the analysis results of sub-filters.

48 / 51

Implementation results

TF2TF2+
E

TF2

delay (1)×− k

S

Defined compositionally in the analyzer
Computation in 0.1s (could be optimized), P/Q P of 6th
degree, Q of 7th degree
εrel ≤ 4.781.10−13, ∥O∥∞ ≤ 2.0576∥I∥∞.

49 / 51

Reconstruction of filters

From C or similar program (SSA form)

while (1) {
...
filter

}

Read all lines in filter, obtain v = e equations from v := e
assignment; variables v in e not already initialized in loop
become z.v
In case of nonlinearity: use approximation to remove the
linear part and get large εrel.
Solve the resulting system.

50 / 51

Summary

Compositional abstract semantics for fixed- and
floating-point digital linear filters with fixed memory of
arbitrary complexity.
Sound bounds on the output obtained as affine function of
bounds on the inputs.
Simple implementation already gives good results.
Good for analysis of data-flow languages for automatic
systems (graphical Scade etc.). Extension for imperative
languages.

51 / 51

	Astrée
	Architecture
	Memory
	Numerical domains
	Iteration trickery

	Filters

