Astrée and the static analysis of reactive control programs

Laure Gonnord David Monniaux

November 3, 2015

Plan

Astrée

Architecture Memory Numerical domains Iteration trickery

Filters

Astrée

Static analyzer for proving

- absence of runtime errors
- absence of assertion violations (assert())

Takes C (subset of C) code as input

Output an exhaustive list of **possible violations**

Plan

Astrée

Architecture

Memory Numerical domains Iteration trickery

Filters

General architecture

- C source
- \downarrow C lexer and parser
- C AST
- $\downarrow C$ typer
- C typed/simplified AST
- \downarrow iterator
- (optional) printout of invariants printout of possible errors

Lexing / parsing + typing

```
    C parsing is almost context-free
Almost: handling of typedef
```

```
typedef int foo; extern int foo(int);
extern int in(void); extern int in(void);
int main() { int main() {
    int bar = in();
    return (foo)(bar); }
}
```

 C typing (integer operations and promotions) is surprisingly tricky

Iterator architecture

```
syntax-directed iterator
domain of forward jumps (break, continue, goto)
memory domain
numerical domain "interchange"
numerical domains
```


Forward jumps

Carry on:

- a "normal flow" abstract element
- break, continue: a stack (one level per loop nesting)
- one abstract element per label to which a goto is made

For backward **goto**, possibility to add a fixed point around (a bit painful and not needed by most software).

Plan

Astrée

Architecture Memory Numerical domains Iteration trickery

Filters

Memory model

C memory = "separate" memory blocks

Base pointer (incomparable) + offset

Memory abstraction mk.1 "Java-like"

memory domain = array of cells

each cell = pointer to set of other cells (or invalid), or index of variable into numerical domain

arrays:

- either "smashed" (one single may-alias cell: all writes are may-writes)
- either expanded

kludges when programs to analyze use type aliasing or pointer arithmetic

Memory model, mk.2

(Antoine Miné, LCTES'06)

Pointer = block identifier + offset (numeric variable)

View each block as an array of bytes

View numeric data as superimposed on this byte array

A practical note on implementation

Several layers of indexed maps (variable \rightarrow memory domain cell, memory domain cell \rightarrow numeric variable)

When control flow splits, two maps that may get altered differently

In an if-then-else, maps exiting both branches are almost the same

The cost of merge (\sqcup) should be counted wrt the number of updated variables, not the total number of variables.

In large-scale control code (*l* = number of lines):

- total # of variables = $\Theta(l)$
- total # of tests = $\Theta(l)$

If "linear cost" of \sqcup : total $\Theta(l^2)$, intolerable.

Data structures

Important: identical sub-parts of partials maps $X \rightarrow Y$ should not be traversed (e.g. \Box on intervals when most intervals are identical)

- Patricia trees: trees indexed by the binary decomposition of the index (opportunistic sharing of sub-trees)
- Balanced binary trees (opportunistic sharing of sub-trees)
- Hash-consing?

Plan

Astrée

Architecture Memory Numerical domains Iteration trickery

Filters

Interval Abstract Domain

- Classical domain [Cousot & Cousot '76]
- Minimum information needed to check the correctness conditions;
- Not precise enough to express a useful inductive invariant (thousands of false alarms);
- $\blacktriangleright \implies$ must be refined by:
 - combining with existing domains through reduced product,
 - designing new domains, until all false alarms are eliminated.

Clock Abstract Domain

Code Sample:

```
R = 0;
while (1) {
    if (I)
      { R = R+1; }
    else
      { R = 0; }
    T = (R>=n);
    wait_for_clock ();
}
```

- Output T is true iff volatile input I true for last n clock ticks.
- Dlock ticks every s seconds for at most h hours, thus R bounded.
- To prove that R cannot overflow, prove that R cannot exceed the elapsed clock ticks (impossible using only intervals).

Solution:

- We add a phantom variable clock
- ► For each variable X. we abstract three intervals: X.

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)
{ ★ L = Z+V; }
*
}

- At ★, intervals give L ≤ max(max A, (max Z)+(max V)).
- In fact, we have $L \leq A$.
- ► To discover this, we must know at ★ that R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

- Octagons a good cost / precision trade-off.
- Invariants of the form ± x± y ≤ c, with O(N²) memory and O(N³) time cost.
- Here, R = A-Z cannot be discovered, but we get $L-Z \le \max_{R \in I} R$ which is sufficient.
- We use many octagons on small packs of variables.

Block diagram

Ellipsoids

$$\blacktriangleright \text{ Computes } X_n = \begin{cases} \alpha X_{n-1} + \beta X_{n-2} + Y_n \\ I_n \end{cases}$$

- The concrete computation is **bounded**, which must be proved in the abstract.
- There is no stable interval or octagon.
- The simplest stable surface is an *ellipsoid*.

Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in boolean variables.

bool B1,B2,B3; float N,X,Y; N = f(B1); if (B1) { X = g(N); } else { Y = h(N); }

Too many booleans (4 000) to build one big tree so we:

- limit the BDD height to 3 (analysis parameter);
- use a syntactic criterion to select variables in the BDD and the numerical parts.

Relational Domains on Floating-Point

Problems:

- ► Relational numerical abstract domains rely on a perfect mathematical concrete semantics (in ℝ or ℚ).
- Perfect arithmetics in \mathbb{R} or \mathbb{Q} is costly.
- IEEE 754-1985 floating-point concrete semantics incurs rounding.

Solution:

- ► Build an abstract mathematical semantics in \mathbb{R} that over-approximates the concrete floating-point semantics, including rounding.
- Implement the abstract domains on R using floating-point numbers rounded in a sound way.

Plan

Astrée

Architecture Memory Numerical domains Iteration trickery

Filters

Basic iterator: recursive descent

On the syntactic structure of programs (not CFG).

- Assignment: forward abstract propagation
- Procedure call: recurse into procedure (virtual inlining)
- ► Tests / switches: go into each branch after filtering by guard, ⊔ at the end
- Loops: fixed point

Iteration Refinement: Loop Unrolling

Principle:

- Semantically equivalent to:
 while (B) { C } => if (B) { C }; while
 (B) { C }
- More precise in the abstract:
 - less concrete execution paths are merged in the abstract.

Application:

Isolate the initialization phase in a loop (e.g. first iteration).

Iteration Refinement: Trace Partitioning

Principle:

Semantically equivalent to:

- More precise in the abstract:
 - concrete execution paths are merged later.

Application:

/ cannot result in a division by zero

Convergence Accelerator: Widening

Principle:

Brute-force widening:

Examples:

- 1., 10., 100., 1000., etc. for floating-point variables;
- maximal values of data types;
- syntactic program constants, etc.

Fixpoint Stabilization for Floating-point

Problem:

- ► Mathematically, we look for an abstract invariant inv such that F(inv) ⊆ inv.
- ► Unfortunately, abstract computation uses floating-point and incurs rounding: maybe F_ε(inv) ⊈ inv!

- ► Widen inv to inv_{ε'} with the hope to jump into a stable zone of F_ε.
- Works if F has some attractiveness property (otherwise iteration goes on).
- $\triangleright \varepsilon'$ is an analysis parameter

Plan

Astrée

Architecture Memory Numerical domains Iteration trickery

Filters

The problem

Discrete-time digital filters implemented in software (general-purpose CPUs, DSPs) or in hardware. A lot of the filtering linear: what we'll deal with Implemented in fixed- or **floating-point**. Need to provide sound assurance of absence of **runtime errors** in the program, **including overflows**. Thus **need to bound all filter outputs** (and all intermediate values).

Discrete-time causal linear filters

Inputs and outputs **streams** of data on "wires" Complex filters made of elementary blocks connected by wires:

- delays (buffer for 1 or more clock tick(s))
- multiplication by a scalar
- addition of 2 streams

Network topology may contain **feedback loops** going through a delay

Example of complex filter

Each TF2 element itself a complex filter with internal filter feedback loop.

Causal, time-invariant linearity

<u>**Causal:**</u> values at clock tick $n \ge 0$ depend on those at clock ticks $\ge n$ only

(Non causal filters typically need entire buffering of the data - we do not cover them here.)

Linearity: outputs a linear function of the inputs (over the reals)

 \Rightarrow each output at time *n* a linear function of the inputs at times $\ge n$

<u>Time invariance</u>: this function is always the same **convolution**, i.e.

$$o^{(n)} = \sum_{k} t^{(k)} i^{(n-k)}$$

Transfer function

Several inputs and initial values in the "delay" operators:

$$o^{(n)} = \sum_{x} \sum_{k} r_{x}^{(k)} i_{x}^{(n-k)} + \sum_{y} k_{y} d_{y}^{(n)}$$

Define $O = \sum_{n=0}^{\infty} o^{(n)} z^n$ a formal power series. The equation becomes

$$O = \sum_{x} T_{x} \cdot I_{x} + \sum_{y} k_{y} \cdot D_{y}$$

 k_y initial value of delay labeled y; I_x series for input stream labeled x; T_x unit response for input x (Z-transform)

Bounding the transfer

We know some bound $[-B_x, B_x]$ on input $I_x: ||I_x||_{\infty} \leq B_x$.

What is the $||I \mapsto T.I||$ operator norm w.r.t $|| \cdot ||_{\infty}$? I.e. the least *M* such that $||T.I||_{\infty} \leq M.||I||_{\infty}$.

Answer: $||I \mapsto T.I|| = ||T||_1$ with $||T|| = \sum_n |t_n|$. Then

$$\|O\|_{\infty} \leq \sum_{x} \|T_{x}\|_{1} \|I_{x}\|_{\infty} + \left\|\sum_{y} k_{y} D.y\right\|_{\infty}$$

Examples

Multiplication by a scalar: $T = \alpha$,

<u>Addition</u>: $T_1 = 1, T_2 = 1$

Delay: by *n* clock ticks, $T = z^n$

Feedback loop

Filter *F* with two inputs *I* and *L*, output *L* fed back into *L* through unit delay (we leave out the initialization): $O = T_I I + T_L L = T_I I + T_L .zO$ and thus O = T .I with

$$T = (1 - zT_L)^{-1} \cdot T_I \cdot I$$

Rational functions

All the *T* power series that we construct are the developments around 0 of **rational functions** P(z)/Q(z) (*P*, *Q* polynomials, Q(0) = 1) - ring $\mathbb{R}[z]_{(z)}$. If a filter has *m* inputs $I_1, ..., I_n$, *r* initialization values $k_1, ..., k_r$, and *n* outputs $O_1, ..., O_m$, then *T* is a $n \times m$ matrix over $\mathbb{R}[z]_{(z)}$; *D* is a $n \times r$ matrix over $\mathbb{R}[z]_{(z)}$; *K* is a *m*-vector of \mathbb{R} ; *I* is a *m*-vector of $\mathbb{R}[z]_{(z)}[[z]]$ (series); *O* is a *n*-vector of $\mathbb{R}[z]_{(z)}[[z]]$ (series) and

$$O = T.I + D.K$$

Feedback loops

Take a filter $F(T^{f}, D^{f}...)$, feedback its *n* outputs into the last of its *m* inputs. $O = T_{1}^{f}.I + T_{2}^{f}.zO + D.K$ and thus

$$O = (\mathrm{Id}_n - z.T_2^{\mathsf{F}})^{-1}.(T_1^{\mathsf{F}}.\mathsf{I} + D.\mathsf{K})$$

(this matrix is necessarily **invertible**) Computations doable over $\mathbb{Q}[z]_{(z)}$!

Summary

Any of the filters can be summarized by matrices of rational functions over the rationals.

These matrices can be computed simply from the coefficients of the various elementary blocks **or from the matrices of whole sub-filters** (compositional design).

Example: filter $O^{(n)} = \sum_{k=0}^{d} \alpha_k I^{(n-k)} + \sum_{k=1}^{e} \beta_k O^{(n-k)}$ has transfer function

$$\frac{\alpha_0 + \alpha_1 z + \dots + \alpha_d z^d}{1 - \beta_1 z - \dots - \beta_e z^e}$$

d = e = 2: TF2 filter in our example

Bounding the output

Let N_x apply $\|\cdot\|_x$ to all coordinates in a matrix or vector. Then $N_{\infty}(O) \leq N_1(T).N_{\infty}(I) + N_{\infty}(D.K)$ The main problem: given a rational function P(z)/Q(z), $Q(0) \neq 0$, give an upper bound on $\|P/Q\|_1$ (of its development around 0). Idea:

- ► compute explicitly the first N terms of this development, compute a bound for ||P/Q||^{<N}₁
- bound the tail: $||P/Q||_1^{\geq N}$

Explicit development

Development of P/Q: division by ascending powers of P(z) by Q(z) (eqv. to running a filter $O^{(n)} = \sum_{k=0}^{d} p_k I^{(n-k)} - \sum_{k=1}^{e} q_k O^{(n-k)}$). Problem: numerical instability using interval arithmetics on floating-point numbers. After a while, error on the same order as the coefficients, sign

of the coefficients unknown, then quick amplification. Solution: develop until sign of the coefficients unknown. (Can go further with extended-precision arithmetic, see GNU MP's MPFR).

Tail bounding

<u>Poles:</u> the zeroes of Q(z) are called **poles** of P(z)/Q(z)The poles determine the behavior of the system. <u>Theorem:</u> system stable ($||P/Q||_1 < \infty$) iff all poles have absolute value > 1 <u>Intuition:</u> (distinct poles) $[P(z)/Q(z)]^{(n)} = \sum_i \alpha_i \xi^{-n}$, ξ_i poles. <u>Theorem:</u> let *R* be the remainder of the division by ascending powers of P/Q up to order *N*, then

$$\|P/Q\|_1^{\geq N} \leq \frac{\|R\|_1}{(|\xi_1|-1)\dots(|\xi_n|-1)}$$

Tail bounding

Implementation: Good algorithms and libraries (GSL...) for finding approximate roots $\tilde{\xi}_i$ of polynomial QMethods for sound bounds on the error on a root $(|\tilde{\xi}_i - \xi| \le e(Q, \tilde{\xi}_i))$

Let \tilde{O} be the output of the filter implemented in fixed- or floating- point, O the ideal real output, then we obtain for single input, output, no initialization:

$$\|\tilde{O} - O\|_{\infty} \le \varepsilon_{\mathrm{rel}} \cdot \|I\|_{\infty} + \varepsilon_{\mathrm{abs}}$$

 $\varepsilon_{\mathrm{rel}}$ relative error, $\varepsilon_{\mathrm{abs}}$ absolute error. In general: $N_{\infty}(\tilde{O} - O) \leq \varepsilon_{\mathrm{rel},T} \cdot N_{\infty}(I) + \varepsilon_{\mathrm{rel},D} \cdot N_{\infty}(K) + \varepsilon_{\mathrm{abs}}$ with $\varepsilon_{\mathrm{rel},T}$, $\varepsilon_{\mathrm{rel},D}$ matrices in \mathbb{R}_+ , $\varepsilon_{\mathrm{abs}}$ vector in \mathbb{R}_+

Error in elementary blocks

 $x \oplus y$ in fixed- or floating-point = r(x + y), $x \otimes y$ in fixed- or floating-point = r(x.y); r rounding function such that $|r(x) - x| \le \varepsilon_{rel} |x| + \varepsilon_{abs}$ Fixed-point: $\varepsilon_{rel} = 0$, $\varepsilon_{abs} = u/2$ (round-to-nearest), $\varepsilon_a bs = u$ (other modes) with u the least representable positive number Floating-point: ε_{rel} error at the n-th binary position after the point

 $\varepsilon_{\rm abs}$ is the **denormalization** error: ex, if *u* is the least representable positive number, then $0.25\otimes u=0$ ($\varepsilon_{\rm abs}$ very small, but included for soundness)

 $|\textbf{\textit{r}}(\textbf{\textit{x}})-\textbf{\textit{x}}| \leq \max(arepsilon_{\mathrm{rel}}.|\textbf{\textit{x}}|,arepsilon_{\mathrm{abs}})$ overapproximated by affine form

Error propagation

Simple blocks: With the above: easy for addition and multiplication by scalar, no error on delays **Feedback loop:** around filter *F*: somewhat complex computation ending up with $\varepsilon_{rel} = A.\varepsilon_{rel} + B$ with *A* with very small coefficients \Rightarrow resolution by fixpoint iteration **Simplification:** with a *P*/*Q* filter (*P*, *Q* with rational coefficients, can be large), replace by \tilde{P}/\tilde{Q} (approximations for *P* and *Q*) with some larger ε_{rel}

To summarize

Any causal linear filter *F* with finite memory implemented over fixed-point or floating-point (or a mix thereof) can be summarized into:

- ► matrices T^F and D^F over Q[z]_(z) expressing the ideal, real input-output relationship by Z-transform: T wrt input streams, D wrt values initially in the delay memories
- ► matrices \(\varepsilon_{\text{rel},T}^F\) and \(\varepsilon_{\text{abs},D}^F\) over \(\mathbb{R}_+\) expressing the relative errors wrt input streams and delay memories
- vector ε_{abs}^{F} of **absolute error**

This is **compositional**: computation for complex filters from the analysis results of sub-filters.

Implementation results

Defined compositionally in the analyzer Computation in 0.1s (could be optimized), P/QP of 6th degree, Q of 7th degree $\varepsilon_{\rm rel} \leq 4.781.10^{-13}, ||O||_{\infty} \leq 2.0576 ||I||_{\infty}.$

Reconstruction of filters

```
From C or similar program (SSA form)
while (1) {
    ...
    filter
}
```

Read all lines in filter, obtain v = e equations from v := e assignment; variables v in e not already initialized in loop become z.v

In case of nonlinearity: use approximation to remove the linear part and get large ε_{rel} . Solve the resulting system.

Summary

Compositional abstract semantics for fixed- and floating-point digital linear filters with fixed memory of **arbitrary complexity**.

Sound bounds on the output obtained as affine function of bounds on the inputs.

Simple implementation already gives good results. Good for analysis of data-flow languages for automatic systems (graphical Scade etc.). Extension for imperative languages.

