
M2IF ENSL - 2015-16
CR10 : Program Analysis and Verification

TP1 : FramaC and Pagai

A .tgz archive of this lab is available on the course’s website :

http://laure.gonnord.org/pro/teaching/verifM2.html

1 Exercises with Z3

https://github.com/Z3Prover/z3

Preparation Z3 is already installed on the ENS machines, in the following places :

/home/dmonniau/packages/z3/bin/z3

and

/home/dmonniau/packages/z3-unstable/bin/z3

You will have to set your $PATH and also your $PYTHONPATH :

export PYTHONPATH=/home/dmonniau/packages/z3/lib/python2.7/dist-packages/

Diamonds In the Diamonds directory of the archive, you will find :

— Two scripts gen_diamond.py and gen_diamond2.py to generate two different families of
unsat “diamond” formula. For instance, python gen_diamond.py 1 generates the follo-
wing formula :

(y0 ≤ x0 + 2) ∧ (z0 ≤ x0 + 3) ∧
(
x1 ≤ y0 ∨ x1 ≤ z0

)
∧ (x1 > 3) ∧ (x0 = 0)

— A script gen_diamond3.pythat generates a family of sat formula.

— And also gen_horn_diamond.py gen_horn_diamond_ungrouped.py.

To check for sat/unsat, for instance :

$ python gen_diamond.py 1 > diam1.smt

$ z3 -smt2 diam1.smt

unsat

With Python/Gnuplot/whatever, try to caracterise the experimental complexity of Z3’s
algorithm on the first three classes of formula (time = f(n) with an adequate n). You can use
the -st option of Z3 to get some useful stats.

Pigeon formula A pigeon fancier has n nests and p pigeons, and want the following constraints
to be respected :

— Each pigeon should be in a nest

— Each nest contains at most 1 pigeon.

The file pigeons_partial.py contains the begining of an encoding : the boolean variable xi,j
represents the fact that pigeon i is in the jth nest. We encoded the first constraints. Complete
the file and play with n and p.

TP1 : FramaC and Pagai, M2IF ENSL - 2015-16, L. Gonnord & D. Monniaux 1/2

http://laure.gonnord.org/pro/teaching/verifM2.html
https://github.com/Z3Prover/z3

2 Exercises with FramaC

http://frama-c.com/index.html

Preparation Put the directory in which we compiled Frama-C 1 in your $PATH, for instance
insert the following line in your .bashrc :

PATH=$PATH:/home/lgonnord/.opam/4.02.1/bin/

In the archive, the FramaC directory contains :

— A Readme to use Frama-C : ModeEmploiFramaC.txt.

— A set of .c files.

— A Makefile.

First, compile all C files with -Wall, in order to be at least confident in their syntax (just type
make all).

Do it yourself ! For each file 2, prove with Frama-C that the program has no incorrect
execution, and that all the asserts are true (some indications are given as comments inside the
files). Prove them in the following order :

— mult.c : a simple simple case, prove it with :

frama-c-gui -wp -wp-rte -wp-split mult.c &

— arith1.c : a first simple invariant

— div*.c : invariants + precondition + postcondition + function calls.

— div*.c : linear search in an array.

— min_sort.c : selection sort with a bit of pointer manipulation (swap)

3 Exercises with Pagai

http://pagai.forge.imag.fr/

Preparation Download a precompiled binary of Pagai (on the ENS machines, the x86-64
version). Test it with the given example (gopan.bc), first compiled with clang (On the ENS
machine, clang 3.4 is available in /usr/bin.)

clang -emit-llvm -g -c gopan.c -o gopan.bc

pagai -i gopan.bc

Finding invariants Play with Pagai (and the various abstract domains) to find numerical
invariants :

— For some of the previous examples.

— For hand-written examples that show the need for the various abstract domains. (intervals,
octogons, polyhedra).

— Do you manage to find a suitable invariant for the gaz burner example ? for the diamond
example (see the course slides) ?

1. We used the opam installer
2. except any.c, which an auxiliary file for I/Os

TP1 : FramaC and Pagai, M2IF ENSL - 2015-16, L. Gonnord & D. Monniaux 2/2

http://frama-c.com/index.html
http://pagai.forge.imag.fr/

	Exercises with Z3
	Exercises with FramaC
	Exercises with Pagai

