
Astrée and the static analysis of reactive
control programs

Laure Gonnord David Monniaux

2016

1 / 24



(general intro on synchronous systems, on board ?)

2 / 24



Astrée

Static analyzer for proving
▶ absence of runtime errors
▶ absence of assertion violations (assert())

Takes C (subset of C) code as input

Output an exhaustive list of possible violations

3 / 24



Plan

Architecture

Memory

Numerical domains

Iteration trickery

4 / 24



General architecture

C source

↓ C lexer and parser

C AST

↓ C typer

C typed/simplified AST

↓ iterator

(optional) printout of invariants
printout of possible errors

5 / 24



Lexing / parsing + typing

▶ C parsing is almost context-free
Almost: handling of typedef

▶ C typing (integer operations and promotions) is
surprisingly tricky

6 / 24



Iterator architecture

syntax-directed iterator

↓

domain of forward jumps (break, continue, goto)

↓

memory domain

↓

numerical domain “interchange”

↓

numerical domains

7 / 24



Forward jumps

Carry on:
▶ a “normal flow” abstract element

▶ break, continue: a stack (one level per loop nesting)

▶ one abstract element per label to which a goto is made

For backward goto, possibility to add a fixed point around (a
bit painful and not needed by most software).

8 / 24



Plan

Architecture

Memory

Numerical domains

Iteration trickery

9 / 24



Memory model

C memory = “separate” memory blocks

Base pointer (incomparable) + offset

10 / 24



Memory abstraction mk.1 “Java-like”

memory domain = array of cells

each cell = pointer to set of other cells (or invalid), or index of
variable into numerical domain

arrays:
▶ either “smashed” (one single may-alias cell: all writes are

may-writes)
▶ either expanded

kludges when programs to analyze use type aliasing or
pointer arithmetic

11 / 24



Memory model, mk.2

(Antoine Miné, LCTES’06)

Pointer = block identifier + offset (numeric variable)

View each block as an array of bytes

View numeric data as superimposed on this byte array

12 / 24



A practical note on implementation
Several layers of indexed maps (variable → memory domain
cell, memory domain cell → numeric variable)

When control flow splits, two maps that may get altered
differently

In an if-then-else, maps exiting both branches are almost the
same

The cost of merge (⊔) should be counted wrt the number of
updated variables, not the total number of variables.

In large-scale control code (l = number of lines):
▶ total # of variables = Θ(l)
▶ total # of tests = Θ(l)

If “linear cost” of ⊔: total Θ(l2), intolerable.
13 / 24



Data structures

Important: identical sub-parts of partials maps X → Y should
not be traversed (e.g. ⊔ on intervals when most intervals are
identical)

▶ Patricia trees: trees indexed by the binary
decomposition of the index (opportunistic sharing of
sub-trees)

▶ Balanced binary trees (opportunistic sharing of
sub-trees)

▶ Hash-consing?

14 / 24



Plan

Architecture

Memory

Numerical domains

Iteration trickery

15 / 24



Interval Abstract Domain

▶ Classical domain [Cousot & Cousot ’76]

▶ Minimum information needed to check the correctness
conditions;

▶ Not precise enough to express a useful inductive
invariant
(thousands of false alarms);

▶ =⇒ must be refined by:
▶ combining with existing domains through reduced

product,
▶ designing new domains, until all false alarms are

eliminated.

16 / 24



Clock Abstract Domain
Code Sample:

R = 0;
while (1) {
if (I)
{ R = R+1; }

else
{ R = 0; }

T = (R>=n);
wait_for_clock ();

}

▶ Output T is true iff volatile
input I true for last n clock
ticks.

▶ Dlock ticks every s seconds
for at most h hours, thus R
bounded.

▶ To prove that R cannot
overflow, prove that R
cannot exceed the elapsed
clock ticks (impossible using
only intervals).

Solution:
▶ We add a phantom variable clock
▶ For each variable X, we abstract three intervals: X,
X+clock, and X-clock.

▶ If X+clock or X-clock is bounded, so is X.

17 / 24



Other

Octogons, ellipsoids, filters …

18 / 24



Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in
boolean variables.
bool B1,B2,B3;
float N,X,Y;
N = f(B1);
if (B1)
{ X = g(N); }

else
{ Y = h(N); }

Decision Tree:

���
���
���

���
���
���

�
�
�

�
�
�

���
���
���

���
���
���

����
����
����
����

Numerical abstract domains

X

Y

X

Y

X

Y

X

Y

B3

B1

B2

BDD

Too many booleans (4 000) to build one big tree so we:
▶ limit the BDD height to 3 (analysis parameter);
▶ use a syntactic criterion to select variables in the BDD

and the numerical parts.

19 / 24



Plan

Architecture

Memory

Numerical domains

Iteration trickery

20 / 24



Basic iterator: recursive descent

On the syntactic structure of programs (not CFG).

▶ Assignment: forward abstract propagation

▶ Procedure call: recurse into procedure (virtual inlining)

▶ Tests / switches: go into each branch after filtering by
guard, ⊔ at the end

▶ Loops: fixed point

21 / 24



Iteration Refinement: Loop Unrolling

Principle:

▶ Semantically equivalent to:

while (B) { C } =⇒ if (B) { C }; while
(B) { C }

▶ More precise in the abstract:
▶ less concrete execution paths are merged in the abstract.

Application:

▶ Isolate the initialization phase in a loop (e.g. first
iteration).

22 / 24



Iteration Refinement: Trace Partitioning
Principle:

▶ Semantically equivalent to:
if (B) { C1 } else { C2 }; C3

⇓
if (B) { C1; C3 } else { C2; C3 };

▶ More precise in the abstract:
▶ concrete execution paths are merged later.

Application:

if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

/ cannot result in a division by zero

23 / 24



Convergence Accelerator: Widening

Already seen

24 / 24


	Architecture
	Memory
	Numerical domains
	Iteration trickery

