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Abstract
Automatically verifying safety properties of programs is
hard, and it is even harder if the program acts upon arrays
or other forms of maps. Many approaches exist for verifying
programs operating upon Boolean and integer values (e.g.
abstract interpretation, counterexample-guided abstraction
refinement using interpolants), but transposing them to array
properties has been fraught with difficulties.

In contrast to most preceding approaches, we do not in-
troduce a new abstract domain or a new interpolation pro-
cedure for arrays. Instead, we generate an abstraction as a
scalar problem and feed it to a preexisting solver. The in-
tuition is that if there is a proof of safety of the program,
it is likely that it can be expressed by elementary steps be-
tween properties involving only a small (tunable) number N
of cells from the array.

Our transformed problem is expressed using Horn clauses
over scalar variables, a common format with clear and un-
ambiguous logical semantics, for which there exist several
solvers. In contrast, solvers directly operating over Horn
clauses with arrays are still very immature.

An important characteristic of our encoding is that it cre-
ates a nonlinear Horn problem, with tree unfoldings, con-
trary to the linear problems obtained by flatly encoding the
control-graph structure. Our encoding thus cannot be ex-
pressed by encoding into another control-flow graph prob-
lem, and truly leverages the Horn clause format.

Experiments with our prototype VAPHOR show that this
approach can prove automatically the functional correctness
of several classical examples of the literature, including se-
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lection sort, bubble sort, insertion sort, as well as examples
from previous articles on array analysis.

1. Introduction
Formal program verification, that is, proving that a given
program behaves correctly according to specification in all
circumstances, is difficult. Except for very restricted classes
of programs and properties, it is an undecidable question.
Yet, a variety of approaches have been developed over the
last 40 years for automated or semi-automated verification,
some of which have had industrial impact.

In this article, we consider programs operating over ar-
rays, or, more generally, maps from an index type to a value
type (in the following, we shall use “array” and “map” inter-
changeably). Such programs contain read (e.g. v := a[i])
and write (a[i] := v) operations over arrays, as well as
“scalar” operations.1

Universally quantified properties Very often, desirable
properties over arrays are universally quantified; e.g. sort-
edness may be expressed as ∀k1, k2 k1 < k2 =⇒ a[k1] ≤
a[k2]. However, formulas with universal quantification and
linear arithmetic over integers and at least one predicate
symbol (a predicate being a function to the Booleans) are
so expressive that one can define the execution of a Turing
machine as a model to such a formula, whence this class is
undecidable [16]. Some decidable subclasses have however
been identified [8]. There is therefore no general algorithm
for checking that such invariants hold, let alone inferring
them. Yet, there have been several approaches proposed to
infer such invariants (more on this in Section 7).

In this article, we propose a method for inferring such
universally quantified invariants, given a specification on the
output of the program. Because of the undecidable nature
of this problem, this approach may fail to terminate in the
general case. Experiments however show that our approach
can successfully and automatically verify nontrivial proper-
ties (e.g. the output from selection sort is sorted and is a
permutation of the input).

1 In the following, we shall lump as “scalar” operations all operations not
involving the array under consideration, e.g. i := i + 1. Any data types
(integers, strings etc.) are supported if supported by the back-end solver.
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Our approach is based on the idea that if there is a proof
of safety of an array-manipulating program, it is likely that
there exists a proof that can be expressed with simple steps
over properties relating only a small number N of (paramet-
ric) array cells. For instance, all the sorting algorithms we
tried can be proved correct with N = 2, and simple array
manipulations (copying, reversing. . . ) with N = 1.

We convert the verification problem to Horn clauses, a
popular format for program verification problems [30] sup-
ported by a number of tools. Most conversions to Horn
clauses map variables and operations from the program to
variables of the same type and the same operations in the
Horn clause problem:2 an integer is mapped to an integer, an
array to an array, etc. If some data types are not supported
by the back-end analysis, the variables of these types may be
discarded, at the expense of precision — thus if the back-end
analysis does not support arrays, array reads are abstracted
as nondeterministic choices, array writes are discarded. In
contrast, our approach abstracts programs much less vio-
lently, with tunable precision, even though the result is still
a Horn clause problems without arrays. Section 3 explains
how many properties (e.g. initialization) can be proved using
one “distinguished cell”, Section 4 explains how properties
such as sortedness can be proved using two cells; completely
discarding arrays corresponds to using zero of them.

We illustrate this approach with automated proofs of sev-
eral examples from the literature: we apply Section 3, 4 or
5.2 to obtain a system of Horn clauses without arrays. This
system is then fed to the Z3, ELDARICA or SPACER solver,
which produces a model of this system, meaning that the
postcondition (e.g. sortedness or multiset of the output equal
to that of the input) truly holds.3

Previous approaches [25] using “distinguished cells”
amounted (even though not described as such) to linear Horn
rules; on contrast, our abstract semantics uses non-linear
Horn rules, which leads to higher precision (Sec. 7.2).

Multiset of contents It is often necessary to reason not
only about individual elements of an array or map, but also
about its contents as a whole: e.g. sorting algorithms pre-
serve the contents of the array (even though, locally, when
moving elements around, they may break this invariant).

The multiset of the contents of an array of elements of
type β is a map from β to N. Using that remark, we can
abstract the array both using our “distinguish cell” approach
and as the multiset of its elements (Sec. 5.2); we provide
suitable program transformations.

We illustrate that approach with an automated proof that
the output of selection sort has the same contents as its input
(that is, the output is a permutation of the input).

2 With the exception of pointers and references, which need special handling
and may be internally converted to array accesses.
3 Z3 and ELDARICA can also occasionally directly solve Horn clauses over
arrays; we also compare to that.

Contributions Our main contribution is a system of rules
for transforming the atomic program statements in a pro-
gram operating over arrays or maps, as well as (optionally)
the universally quantified postcondition to prove, into a sys-
tem of non-linear Horn clauses over scalar variables only.
The precision of this transformation is tunable using a num-
ber of “distinguished cells”; e.g. properties such as sorted-
ness need two distinguished cells (Section 4) while simpler
properties need only one (Section 3). Statements operating
over non-arrays variables are mapped (almost) identically to
their concrete semantics. This system over-approximates the
behavior of the program. A solution of that system can be
mapped to inductive invariants over the original programs,
including universally properties over arrays.

A second contribution, based upon the first, is a system
of rules of the same kind that also keeps tracks of array/map
contents (Section 5.2) as a multiset. This system is suitable
for showing e.g. that the output of a sorting algorithm is
a permutation of the input, even though the sequence of
operations is not directly a sequence of swaps.

We implemented our approach and benchmarked it over
several classical examples of array algorithms (Section 6),
comparing it favorably to other tools.

2. Program Verification as solving Horn
clauses

A classical approach to program analysis is to consider a
program as a control-flow graph and to attach to each vertex
pi (control point) an inductive invariant Ii: a set of possible
values x of the program variables (and memory stack and
heap, as needed) so that i) the set associated to the initial
control point pi0 contains the possible initialization values
Si0 ii) for each edge pi →c pj (c for concrete), the set Ij
associated to the target control point pj should include all
the states reachable from the states in the set Ii associated
to the source control point pi according to the transition
relation τi,j of the edge. Inductiveness is thus defined by
Horn clauses:

∀x, x ∈ Si0 =⇒ x ∈ Ii0 (1)
∀x,x′ x ∈ Ii ∧ (x,x′) ∈ τi,j =⇒ x′ ∈ Ij (2)

For proving safety properties, in addition to inductive-
ness, one requires that error locations pe1 , . . . , pen are
proved to be unreachable (the associated set of states is
empty): this amounts to Horn clauses implying false (⊥):
∀x, x ∈ Iei =⇒ ⊥.

Various tools can solve such systems of Horn clauses, that
is, can synthesize suitable predicates Ii, which constitute
inductive invariants. In this article, we tried Z34 with the
PDR fixed point solver [18], Z3 with the SPACER solver

4 https://github.com/Z3Prover hash 7f6ef0b6c0813f2e9e8f993d45722c0e5b99e152;
due to various problems we preferred not to use results from later versions.
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initstart loop end
n > 0
i := 0

i < n
a[i] := 42
i := i+ 1

i ≥ n

Figure 1. Compact control-flow graph for Program 1

[20, 21],5 and ELDARICA[29].6 Since program verification
is undecidable, such tools, in general, may fail to terminate,
or may return “unknown”.

For the sake of simplicity, we shall consider, in this arti-
cle, that all integer variables in programs are mathematical
integers (Z) as opposed to machine integers7 and that arrays
are infinite. Again, it is easy to modify our semantics to in-
clude systematic array bound checks, jumps to error condi-
tions, etc.

In examples, instead of writing Istmt for the name of the
predicate (inductive invariant) at statement stmt , we shall
write stmt directly, for readability’s sake: thus we write e.g.
loop for a predicate at the head of a loop. Furthermore, we
shall sometimes coalesce several successive statements into
one, for the sake of readability.

Example 1 (Motivating example). Consider the program:

Listing 1. 1D array fill
void a r r a y f i l l 1 ( i n t n , i n t a [ n ] ) {

i n t i = 0 ;
while ( i < n ) {

a [ i ] = 4 2 ;
i = i +1;

}
}
We would like to prove that this program truly fills array a[]
with value 42. The flat encoding into Horn clauses assigns a
predicate (set of states) to each of the control nodes (Fig. 1),
and turns each transition into a Horn rule:

∀n ∈ Z ∀a ∈ Array (Z,Z) n > 0 =⇒ loop(n, 0, a) (3)

∀n, i ∈ Z ∀a ∈ Array (Z,Z) i < n ∧ loop(n, i, a)

=⇒ loop(n, i+ 1, store(a, i, 42))
(4)

∀n, i ∈ Z ∀a ∈ Array (Z,Z) i ≥ n ∧ loop(n, i, a)

=⇒ end(n, a)
(5)

∀n ∈ Z ∀a ∈ Array (Z,Z) 0 ≤ x < n ∧ end(n, a)

=⇒ a[x] = 42
(6)

5 https://bitbucket.org/spacer/code hash 7e1f9af01b796750d9097b331bb66b752ea0ee3c
6 https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc
7 A classical approach is to add overflow checks to the intermediate repre-
sentation of programs in order to be able to express their semantics with
mathematical integers even though they operate over machine integers.

where store(a, i, v) is array a where the value at index i has
been replaced by v.

None of the tools we have tried (Z3/PDR, Z3/SPACER,
ELDARICA) has been able to solve this system, presumably
because they cannot infer universally quantified invariants
over arrays. Indeed, here the invariant needed in the loop is

0 ≤ i ≤ n ∧ (∀k 0 ≤ k < i =⇒ a[k] = 42) (7)

While 0 ≤ i ≤ n is inferred by a variety of approaches, the
rest of the formula is a tougher problem.

Most software model checkers attempt constructing in-
variants from Craig interpolants obtained from refutations
of the accessibility of error states in partial unfoldings of the
problem, but interpolation over array properties is difficult,
especially since the goal is not to provide any interpolant,
but interpolants that generalize well to invariants [1, 2].

This article instead introduces a way to derive universally
quantified invariants from the analysis of a system of Horn
clauses on scalar variables (without array variables).

3. Getting rid of the arrays
To use the power of Horn solvers, we soundly abstract prob-
lems with arrays to problems without arrays.

In the Horn clauses for example 1, we attached to each
program point p` a predicate I` over Z× Z× Array (Z,Z)
when the program variables are two integers i, n and one
integer-value, integer-indexed array a. In any solution of the
system of clauses, ¬I`(i, n, a) implies that i, n, a cannot be
reached at program point p`. Instead, we will consider a
predicate (“with one distinguished cell”) I]` over Z × Z ×
Z × Z such that ¬I]` (i, n, k, ak) 8 implies that there is at p`
no reachable state (i, n, a) such that a[i] = ak. We thus have
to provide abstract transformers for each statement.

Without loss of generality, any statement in the program
can be assumed to be either:

i) an array read to a fresh variable, v=a[i ]; in C syntax,
v := a[i] in pseudo-code; the variables of the program
are (x, i, v) where x is a vector of arbitrarily many
variables;

ii) an array write, a[ i]=v; (where v and i are variables) in
C syntax, a[i] := v in pseudo-code; the variables of the
program are (x, i, v) before and after the statement;

iii) a scalar operation, including assignments and guards
over scalar variables.

More complex statements can be transformed to a sequence
of such statements, by introducing temporary variables
if needed: for instance, a[i] := a[j] is transformed into
temp := a[j]; a[i] := temp.

Definition 1 (Read statement). Let v be a variable of type
β, i be a variable of type ι, and a be an array of values of
type β with an index of type ι. Let x be the other program

8 also denoted by ¬I]` ((i, n), (k, ak)) for sake of readability.
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variables, taken in χ. The concrete “next state” relation for
the read statement v=a[i ]; is (x, i, v, a)→c (x, i, a[i], a)

9.
Its forward abstract semantics is encoded into two Horn

clauses, assuming the statement is between p1 and p2:

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β
k 6= i ∧ I]1

(
(x, i, v), (k, ak)

)
∧ I]1

(
(x, i, v), (i, ai)

)
=⇒ I]2

(
(x, i, ai), (k, ak)

) (8)

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β
I]1
(
(x, i, v), (i, ai)

)
=⇒ I]2

(
(x, i, ai), (i, ai)

) (9)

While rule 9 is straightforward (ai is assigned to the
variable v), the nonlinear10 rule 8 may be more difficult to
comprehend. The intuition is that, to have ai = a[i] and
ak = a[k] at the read instruction with a given valuation (x, i)
of the other variables, both ai = a[i] and ak = a[k] had to
be reachable with the same valuation.

Remark 1. One weakens the semantics by replacing these
two rules by a single Rule 8 without the i 6= k guard. Rule 9
ensures that in the outcome, if i = k then v = ak.

Definition 2 (Write statement). The concrete “next state”
relation for the write statement a[ i]=v; is (x, i, v, a) →c

(x, i, v, store(a, i, v)). Its forward abstract semantics is en-
coded into two Horn clauses, depending whether the distin-
guished cell is i or not:

∀x ∈ χ ∀i ∈ ι ∀v ∈ β ∀k ∈ ι ∀ak ∈ β i 6= k∧
I]1
(
(x, i, v), (k, ak)

)
=⇒ I]2

(
(x, i, v), (k, ak)

) (10)

∀x ∈ χ ∀i ∈ ι ∀v ∈ β ∀k ∈ ι ∀ak ∈ β
I]1
(
(x, i, v), (i, ak)

)
=⇒ I]2

(
(x, i, v), (i, v)

) (11)

Definition 3 (Initialization). Creating an array variable with
nondeterministically chosen initial content is abstracted by

∀x ∈ χ ∀k ∈ ι ∀ak ∈ β I]1(x) =⇒ I]2(x, k, ak) (12)

Definition 4 (Scalar statements). With the same notations
as above, we consider a statement (or sequence thereof)
operating only on scalar variables: x →s x′ if it is possible
to obtain scalar values x′ after executing the statement on
scalar values x. The concrete “next state” relation for that
statement is (x, i, v, a) →c (x

′, i, v, a). Its forward abstract
semantics is encoded into one Horn clause:

∀x ∈ χ ∀k ∈ ι ∀ak ∈ β
I]1(x, k, ak) ∧ x→s x

′ =⇒ I]2(x
′, k, ak)

(13)

Example 2. A test x 6= y gets abstracted as

∀x, y, k, ak I]1(x, y, k, ak) ∧ x 6= y =⇒ I]2(x, y, k, ak)
(14)

9 There is a slight abuse in notation as variable v might belong to x
10 Nonlinear in the sense that it refers to I]1 twice in its antecedents, and
thus unfolding it tends to create a tree structure, as opposed to a “comb”.

Definition 5. The scalar operation kill(v1, . . . , vn) removes
variables v1, . . . , vn: (x, v1, . . . , vn)→ x.

We shall apply it to get rid of dead variables, sometimes,
for the sake of brevity, without explicit note, by coalescing
it with other operations.

We use the same Galois connection [10] as some earlier
works [25] [11, Sec. 2.1]:

Definition 6. The concretization of I] ⊆ χ× (ι× β) is

γ(I]) = {(x, a) | ∀i ∈ ι (x, i, a[i]) ∈ I]} (15)

The abstraction of I ⊆ χ×Array (ι, β) is

α(I) = {(x, i, a[i]) | x ∈ χ, i ∈ ι} (16)

Theorem 1. α and γ form a Galois connection

P (χ×Array (ι, β)) −−→←−−α
γ
P (χ× (ι× β)) .

Our Horn rules are of the form ∀y I]1(f1(y)) ∧ · · · ∧
I]1(fm(y))∧P (y) =⇒ I]2(g(y)) (y is a vector of variables,
f1, . . . , fm vectors of terms depending on y, P an arithmetic
predicate over y). In other words, they impose in I]2 the pres-
ence of g(y) as soon as certain elements f1(y), . . . , fm(y)

are found in I]1. Let I]2− be the set of such imposed ele-
ments. This Horn rule is said to be sound if γ(I]2−) includes
all states (x′, a′) such that there exists (x, a) in γ(I]1) and
(x, a)→c (x

′, a′).

Lemma 2. The forward abstract semantics of the read state-
ment (Def. 1), of the write statement (Def. 2), of array initial-
ization (Def. 3), of the scalar statements (Def. 4) are sound
w.r.t the Galois connection.

Remark 2. The scalar statements include “killing” dead
variables (Def. 5). Note that, contrary to many other ab-
stractions, in ours, removing some variables may cause
irrecoverable loss of precision on other variables [25,
Sec. 4.2]: if v is live, then one can represent ∀k, a[k] = v,
which implies ∀k1, k2 a[k1] = a[k2] (constantness), but if v
is discarded, the constantness of a is lost.

Theorem 3. If I]1, . . . , I
]
m are a solution of a system of Horn

clauses sound in the above sense, then γ(I]1), . . . , γ(I
]
m) are

inductive invariants w.r.t the concrete semantics→c.

Proof. From the general properties of fixed points of mono-
tone operators and Galois connections [10].

Definition 7 (Property conversion). A property “at program
point p`, for all x ∈ χ and all k ∈ ι, φ(x, k, a[k]) holds”
(where φ is a formula, say over arithmetic) is converted into
a Horn query ∀x ∈ χ ∀k ∈ ι φ(x, k, ak).

Our method for converting a scalar program into a system
of Horn clauses over scalar variables is thus:

Algorithm 1. 1. Construct the control-flow graph of the
program.
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2. To each control point p`, with vector of scalar variables
x`, associate a predicate I]` (x`, k, ak) in the Horn clause
system (the vector of scalar variables may change from
control point to control point).

3. For each transition of the program, generate Horn rules
according to Def. 1, 2, 4 as applicable (an initialization
node does not need antecedents in its rule).

4. Generate Horn queries from desired properties according
to Def. 7.

Example (Ex. 1, continued). Let us now apply the Horn
abstract semantics from Definitions 2 and 4 to Program 1; in
this case, α = Z, ι = {0, . . . , n − 1}, χ = Z. After a slight
simplification of the Horn clauses, we obtain (formula 4 has
been replaced by 19 and 20):

∀n, k, ak ∈ Z 0 ≤ k < n =⇒ loop(n, 0, k, ak) (17)

∀n, i, k, ak ∈ Z 0 ≤ k < n ∧ i < n ∧ loop(n, i, k, ak)

=⇒ write(n, i, k, ak)
(18)

∀n, i, k, ak ∈ Z 0 ≤ k < n ∧ i 6= k ∧ write(n, i, k, ak)

=⇒ incr(n, i, k, ak)
(19)

∀n, i, ak ∈ Z ∧ write(n, i, i, ak)

=⇒ incr(n, i, i, 42)
(20)

∀n, i, k, ak ∈ Z 0 ≤ k < n ∧ incr(n, i, k, ak)

=⇒ loop(n, i+ 1, k, ak)
(21)

∀n, i, k, ak ∈ Z 0 ≤ k < n ∧ i ≥ n ∧ loop(n, i, k, ak)

=⇒ end(n, k, ak)
(22)

Finally, we add the postcondition (using Def. 7):

∀n, k, ak 0 ≤ k < n ∧ end(n, i, k, ak)⇒ ak = 42 (23)

A solution to the resulting system of Horn clauses can be
found by e.g. Z3/PDR.

Our approach can also be used to establish relationships
between several arrays, or between the initial values in an
array and the final values.

Example 3. Consider the problem of finding the minimum
of an array slice a[l . . . h− 1], with value b = a[p]:

Listing 2. Find minimum in an array slice
void find minimum ( i n t n , i n t a [ n ] , i n t l ,

i n t h ) {
i n t p = l , b = a [ l ] , i = l +1;
while ( i < h ) {

i n t v = a [ i ] ;
i f ( v < b ) {

b = v ;
p = i ;

}
i = i +1;

}
}

Again, we encode the abstraction of the statements (Def. 1,
2, 4) as Horn clauses. At the end we have a predicate
end(l, h, p, b, k, a[k]) on which we impose the properties

∀l, h, p, b, ap end(l, h, p, b, p, ap) =⇒ b = ap (24)

∀l, h, p, b, k, ap, ak l ≤ k < h ∧ end(l, h, p, b, k, ak)

=⇒ b ≤ ak
(25)

Rule 24 imposes the postcondition b = a[p], Rule 25 imposes
the postcondition ∀k l ≤ k < h =⇒ b ≤ a[k].

No restrictions on domain type and relationships The
kind of relationship that can be inferred between loop in-
dices, array indices and array contents is limited only by the
capabilities of the Horn solver. For instance, invariants of the
form ∀i i ≡ 0 (mod 2) =⇒ a[i] = 0 may be inferred if
the Horn solver supports numeric invariants involving divis-
ibility. Similarly, we have made no assumption regarding the
nature of the indexing variable: we used integers because ar-
rays indexed by an integer range are a very common kind of
data structure, but really it can be any type supported by the
Horn clause solver, e.g. rationals or strings.

Matrices Matrices are bidimensional arrays, that is, arrays
indexed by two integers x and y: 0 ≤ x < m, 0 ≤ y < n for
a m×n arrays. More generally, arrays can be defined for an
arbitrary number d of dimensions. Everything that we have
seen so far applies when the type ι of the indexing variable
is Zd. We may therefore apply directly what precedes and
generate Horn clauses referring to pairs of indices (x, y).
Since not every solver supports these, one may instead use
two indices x and y: a comparison (x1, y1) = (x2, y2) is
expressed as x1 = x2 ∧ y1 = y2.

Example 4. The following program fills a m× n matrix:

Listing 3. Fill 2D-matrix
void a r r a y f i l l 2 ( i n t m, i n t n , i n t a [m] [ n ] ) {

i n t i = 0 ;
while ( i < m) {

i n t j = 0 ;
while ( j < n ) {

a [ i ] [ j ] = 4 2 ;
j = j +1 ;

}
i = i +1;

}
}
Again, we can prove that ∀m,n, x, y, axy ∈ Z, exit =⇒
axy = 42; otherwise said, finally, ∀x, y a[x, y] = 42.

4. Sortedness and other N-ary predicates
The Galois connection of Def. 6 expresses relations of the
form ∀k ∈ ι φ(x, k, a[k]) where x are variables from the
program, a a map and k an index into the map a; in other
words, relations between each array element individually
and the rest of the variables. It cannot express properties
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such as sortedness, which link two array elements: ∀k1, k2 ∈
ι k1 < k2 =⇒ a[k1] ≤ a[k2].
Definition 8. The abstraction with two “distinguished cells”
is defined by the concretization and abstraction:

γ2(I]) = {(x, a) | ∀k1, k2 ∈ ι (x, k1, a[k1], k2, a[k2]) ∈ I]} (26)

α2(I) = {(x, k1, a[k1], k2, a[k2]) | x ∈ χ, k1, k2 ∈ ι} (27)

Theorem 4. α2 and γ2 form a Galois connection.

P (χ×Array (ι, β)) −−−→←−−−α2

γ2 P
(
χ× (ι× β)2

)
.

With respect to implementation efficiency, it may be
preferable to break this symmetry between indices k1 and
k2 by imposing k1 < k2 for some total order.

Definition 9. The abstraction with indices k1 < k2 is

γ2<(I]) = {(x, a) | ∀k1 < k2 ∈ ι (x, k1, a[k1], k2, a[k2]) ∈ I]} (28)

α2<(I) = {(x, k1, a[k1], k2, a[k2]) | x ∈ χ, k1 ≤ k2 ∈ ι} (29)

Theorem 5. α2< and γ2< form a Galois connection

P (χ×Array (ι, β)) 5 −−−−→←−−−−
α2≤

γ2≤

P ({(x, k1, v1, k2, v2) | x ∈ χ, k1 < k2 ∈ ι, v1, v2 ∈ β}) .

These constructions easily generalize to arbitrary N in-
dices k1, . . . , kN .

Definition 10 (Read statement, two indices k1 < k2). The
abstraction of v := a[i] is:11

I]1(x, i, k1, ak1 , k2, ak2) ∧ I]1(x, i, i, ai, k2, ak2)∧
I]1(x, i, i, ai, k1, ak1) ∧ i < k1 < k2

=⇒ I]2(x, i, ai, k1, ak1 , k2, ak2)

(30)

I]1(x, i, i, ai, k2, ak2) ∧ I]1(x, i, k1, ak1 , k2, ak2)∧
I]1(x, i, i, ai, k1, ak1) ∧ k1 < i < k2

=⇒ I]2(x, i, ai, k1, ak1 , k2, ak2)

(31)

I]1(x, i, k2, ak2 , i, v) ∧ I]1(x, i, k1, ak1 , i, v)∧
I]1(x, i, k1, ak1 , k2, ak2) ∧ k1 < k2 < i

=⇒ I]2(x, i, ai, k1, ak1 , k2, ak2)

(32)

I]1(x, i, i, ai, k2, ak2) ∧ i < k2 =⇒ I]2(x, i, i, ai, k2, ak2)

(33)

I]1(x, i, k1, ak1 , i, v) ∧ k1 < i =⇒ I]2(x, i, k1, ak1 , i, v)

(34)

This construction generalizes to N -ary abstraction by
considering all orderings of i inside k1 < · · · < kN , and
for each ordering taking all sub-orderings of size N .

11 We shall now on omit universal quantifiers in front of clauses.

Definition 11 (Write statement, two indices k1 < k2). The
abstraction of a[i] := v is:

I]1(x, i, v, k1, ak1 , k2, ak2) ∧ i 6= k1 ∧ i 6= k2

=⇒ I]2(x, i, v, k1, ak1 , k2, ak2)

(35)

I]1(x, i, v, i, ak1 , k2, ak2) ∧ i < k2 =⇒ I]2(x, i, v, i, v, k2, ak2)

(36)

I]1(x, i, v, k1, ak1 , i, ak2) ∧ k1 < i =⇒ I]2(x, i, v, k1, ak1 , i, v)

(37)

Lemma 6. The abstract forward semantics of the read state-
ment (Def. 10) and of the write statement(Def. 11) are sound
w.r.t the Galois connection.

Example 5 (Selection sort). Selection sort finds the least
element in a[l . . . h − 1] (using Prog. 2 as its inner loop)
and swaps it with a[l], then sorts a[l + 1, h− 1]. At the end,
a[l0 . . . h− 1] is sorted, where l0 is the initial value of l.

Listing 4. Selection sort
void s e l e c t i o n s o r t ( i n t l0 , i n t h , i n t a [ ] )

{
i n t l = l 0 ;
while ( l < h−1) {

i n t p = l , b = a [ l ] , f = b , i = l +1;
while ( i < h ) {

i n t v = a [ i ] ;
i f ( v < b ) {

b = v ;
p = i ;

}
i = i +1;

}
a [ l ] = b ;
a [ p ] = f ;
l = l +1;

}
}

Using the rules for the read (Def. 10) and write (Def. 11)
statements, we write the abstract forward semantics of this
program as a system of Horn clauses.

We wish to prove that, at the end, a[l0, h− 1] is sorted: at
the exit node,

∀l0 ≤ k1 < k2 < h a[k1] ≤ a[k2] (38)

This is expressed as the final condition

∀l0, h, k1, ak1 , k2, ak2 l0 ≤ k < k2 < h

∧exit(l0, h, k1, ak1 , k2, ak2) =⇒ ak1 ≤ ak2
(39)

By running a solver on these clauses, we show that the
output of selection sort is truly sorted12 Let us note that this

12 In Example 6 we shall see how to prove that the multiset of elements in
the output is the same as in the input.
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proof relies on nontrivial invariants:13

∀k1, k2 l0 ≤ k1 < l ∧ k1 ≤ k2 < h =⇒ a[k1] ≤ a[k2]
(40)

This invariant can be expressed in our Horn clauses as:

∀l0, l, h, k1, ak1 , k2, ak2 ∈ Z l0 ≤ k1 < l ∧ k1 < k2 < h

∧outerloop(l0, l, h, k1, ak1 , k2, ak2) =⇒ ak1 ≤ ak2

(41)

If this invariant is added to the problem as an additional
query to prove, solving time is reduced from 6min to 1 s. It
may seem counter-intuitive that a solver takes less time to
solve a problem with an additional constraint; but this con-
straint expresses an invariant necessary to prove the solution,
and thus nudges the solver towards the solution.

Our approach is therefore flexible: if a solver fails to
prove the desired property on its own, it is possible to help
it by providing partial invariants. This is a less tedious ap-
proach than having to provide full invariants at every loop
header, as common in assisted Floyd-Hoare proofs.

5. Sets and multisets
Our abstraction for maps may be used to abstract (multi)sets.

5.1 Simple sets and multisets
Many programming languages provide libraries for comput-
ing over sets or multisets of elements. One should reason
on programs using these libraries by using the set-theoretic,
high-level specification of their interface, as opposed to in-
ternal implementation details.

Remark, again, that we have made no assumption on
the set of indices ι (except, occasionally, that is endowed
with a total order, but that assumption may be dispensed
from). A subset of ι is just a map from ι to the Booleans,
a multiset a map from ι to the natural numbers. Testing the
membership of one item k ∈ ι therefore just amounts to an
array read a[k], forcing membership or non-membership just
amounts to a write.

A single (multi)set a is abstracted as a set of pairs
(k, a[k]). If one has several (multi)sets a, b, c, one may either
abstract them with separate indices (i, a[i], j, a[j], k, a[k]),
or with a common index (k, a[k], b[k], c[k]). This last option
is less expressive, but simpler, and is often sufficient.

Definition 12 ((Multi)set union). Let a, b, c be three multi-
sets. The operation a := union(b, c) is abstracted as:

∀x ∈ χ ∀k ∈ ι I]1(x, k, ak, bk, ck)
=⇒ I]2(x, k, bk ∨ ck, bk, ck)

(42)

(For multiset, replace ∨ by +.)

13 Nontrivial in the sense that a human user operating a Floyd-Hoare proof
assistant typically does not come up with them so easily.

Definition 13 (Set intersection). Let a, b, c be three multi-
sets. The operation a := intersection(b, c) is abstracted as:

∀x ∈ χ ∀k ∈ ι I]1(x, k, ak, bk, ck)
=⇒ I]2(x, k, bk ∧ ck, bk, ck)

(43)

If operations such as “get the (min/max)imal element” are
to be abstracted precisely, then one can enrich the abstraction
by adding tracking variables l and h for the minimal and
maximal elements, and updating them accordingly. In the
case of sets of integers, such tracking variables may be used
to implement the “for each” iterator: iterate i from l to h and
test whether i is in the set.

5.2 Multiset of elements in an array
In Example 5, we showed how to prove that the output of
selection sort is sorted. This is not enough for functional
correctness: we also have to prove that the output is a per-
mutation of the input, or, equivalently, that the multiset of
elements in the output array is the same as that in the input
array.

Let us remark that it is easy to keep track, in an auxiliary
map, of the number #a(x) of elements of value x in the
array a[]. Only write accesses to a[] have an influence on
#a: a write a[i] := v is replaced by a sequence:

#a(a[i]) := #a(a[i])− 1; a[i] := v; #a(v) := #a(v) + 1
(44)

(that is, in addition to the array write, the count of elements
for the value that gets overwritten is decremented, and the
count of elements for the new value is incremented).

This auxiliary map #a can itself be abstracted using our
approach! Let us now see how to implement this in our
abstract forward semantics expressed using Horn clauses.
We enrich our Galois connection (Def. 6) as follows:

Definition 14. The concretization of I] ⊆ χ × (ι × β) ×
(β × N) is

γ#(I
]) =

{
(x, a) | ∀i ∈ ι ∀v ∈ β(

x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})
)
∈ I]

}
(45)

where cardX denotes the number of elements in the set X .
The abstraction of I ⊆ χ×Array (ι, β) is

α#(I) =
{(

x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})
)∣∣∣ x ∈ χ, i ∈ ι} (46)

Theorem 7. α# and γ# form a Galois connection

P (χ×Array (ι, β)) −−−→←−−−
α#

γ#
P (χ× (ι× β)× (β × N)) .

The Horn rules for array reads and for scalar operations
are the same as those for our first abstraction, except that we
carry over the extra two components identically.
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Definition 15 (Read statement). Same notations as Def. 1:
k 6= i ∧ I]1

(
(x, i, v), (k, ak), (z, a#z)

)
∧

I]1
(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I]2

(
(x, i, ai), (k, ak), (z, a#z)

)
I]1
(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I]2

(
(x, i, ai), (i, ai), (z, a#z)

)
Lemma 8. The abstract forward semantics of the read state-
ment (Def. 15) is a sound abstraction of the concrete seman-
tics given in Def. 1.

The abstraction of the write statement is more compli-
cated (see the sequence of instructions in Formula 44). To
move by a write operation a[i] := v from a control point
p1 to a control point p2, we need two intermediate control
points pa and pb.
Definition 16 (Write statement). With the same notations in
Def. 2:

ai 6= z ∧ I]1
(
(x, i, v), (k, ak), (z, a#z)

)
∧I]1

(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I]a

(
(x, i, v), (k, ak), (z, a#z)

)
(47)

I]1
(
(x, i, v), (k, ak), (ai, a#z)

)
∧ I]1

(
(x, i, v), (i, ai), (ai, a#z)

)
=⇒ I]a

(
(x, i, v), (k, ak), (ai, a#z − 1)

)
(48)

v 6= z ∧ I]a
(
(x, i, v), (k, ak), (z, a#z)

)
∧I]a

(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I]b

(
(x, i, v), (k, ak), (z, a#z)

)
(49)

I]a
(
(x, i, v), (k, ak), (v, a#z)

)
∧ I]a

(
(x, i, v), (i, ai), (v, a#z)

)
=⇒ I]b

(
(x, i, v), (k, ak), (v, a#z + 1)

)
(50)

i 6= k ∧ I]1
(
(x, i, v), (k, ak), (z, a#z)

)
=⇒ I]2

(
(x, i, v), (k, ak), (z, a#z)

)
(51)

I]1
(
(x, i, v), (i, ak), (z, a#z)

)
=⇒ I]2

(
(x, i, v), (i, v), (z, a#z)

)
(52)

Lemma 9. The abstract forward semantics of the write
statement (Def. 16) is a sound abstraction of the concrete
semantics given in Def. 2.

If we want to compare the multiset of the contents of
an array a at the end of a procedure to its contents at the
beginning of the procedure, one needs to keep a copy of
the old multiset. It is common that the property sought is
a relation between the number of occurrences #a(z) of an
element z in the output array a and its number of occurrences
#a0(z) in the input array a0. In the above formulas, one may
therefore replace the pair (z, a#z) by (z, a#z, a

0
#z), with

a0#z always propagated identically.

Example 6. Consider again selection sort (Program 4).
We use the abstract semantics for read (Def. 15) and write
(Def. 16), with an additional component a0#z for tracking the
original number of values z in the array a.

We specify the final property as the query

exit(l0, h, k, ak, z, a#z, a
0
#z) =⇒ a#z = a0#z (53)

6. Experiments
Implementation We implemented our prototype VAPHOR
in 2k lines of OCAML. VAPHOR takes as input a mini-Java
program (a variation of WHILE with array accesses, and as-
sertions) and produces a SMTLIB2 file14. The core analyzer
implements the translation for one-dimensional arrays de-
scribed in Section 3 and Section 4, and also the direct trans-
lation toward a formula with array variables.

Experiments We have tested our analyser on several ex-
amples from the literature, including the array benchmark
proposed in [13] also used in [3] (Table 1); and other clas-
sical array algorithms including selection sort, bubble sort
and insertion sort (Table 2). We compared our approach to
existing Horn clause solvers capable of dealing with arrays.
All these files are provided as supplementary material.

Limitations Our tool does not currently implement multi-
dimensional arrays (matrices) or reasoning over array con-
tents (multiset of values). Experiments for these were thus
conducted by manually applying the transformations de-
scribed in this article in order to obtain a system of Horn
clauses. For this reason, because applying rules manually is
tedious and error-prone, the only sorting algorithm for which
we have checked that the multiset of the output is equal to
the multiset of the inputs is selection sort. We are however
confident that the two other algorithms would go through,
given that they use similar or simpler swapping structures.

Some examples from Dillig et al. [13] involve invariants
with even/odd constraints. The Horn solvers we tried do
not seem to be able to infer invariants involving divisibility
predicates unless these predicates were given by the user. For
these cases we added these even/odd properties as additional
invariants to prove.

Efficiency caveats Our tool does not currently simplify the
system of Horn clauses that it produces. We have observed
that, in some cases, manually simplifying the clauses (re-
moving useless variables, inlining single antecedents by sub-
stitution. . . ) dramatically reduces solving times. Also, pre-
computing some simple scalar invariants on the Horn clauses
(e.g. 0 ≤ k < i for a loop from k to i−1) and asserting them
as assertions to prove in the Horn system sometimes reduces
solving time.

We have observed that the execution time of a Horn solver
may dramatically change depending on minor changes in
the input, pseudorandom number generator seed, or version
of the solver. For instance, the same version of Z3 solves
the same system of Horn clauses (proving the correctness of
selection sort) in 3m 40s or 3h 52m depending on whether
the random seed is 1 or 0.15

14 http://smtlib.cs.uiowa.edu/
15 We suspect that different choices in SAT lead to different proofs of
unsatisfiability, thus different interpolants and different refinements in the
PDR algorithm.
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Table 1. Comparison on the array benchmarks of [13]. Timing are in seconds, CPU time. N > 0 indicates our abstraction with N indices,
N = −1 indicates a call to a Horn solver supporting arrays, for reference, when at least one solver succeeded. “sat” means the property was proved,
“unsat” that it could not be proved (N > 0) or that it was disproved by a counterexample (N = −1). Timeout was 5 mn unless otherwise noted. The
machine has 32 i3-3110M cores, 64 GiB RAM, C/C++ solvers were compiled with gcc 4.8.4, the JVM is OpenJDK 1.7.0-85. When N = −1, Z3 version
d7c3e77b66414d1d10f1df73b6b1a792496710e6 was used instead, due to soundness issues with respect to arrays in previous versions.

benchmark N Z3/PDR Z3/SPACER ELDARICA comments
result time result time result time

Correct problems, “sat” expected
append 1 sat 2.36 sat 3.34 sat 26.90
append -1 sat 31.74 sat 0.16 unknown 6.63
copy 1 sat 7.57 sat 0.78 timeout 331.30
copyodd 1 sat 0.01 sat 0.00 sat 8.70
copyodd -1 sat 0.00 sat 0.00 sat 8.28
find 1 sat 0.26 sat 0.26 sat 12.45
find -1 sat 0.04 sat 0.03 unknown 7.29
findnonnull 1 sat 0.26 sat 0.15 sat 29.50
findnonnull -1 sat 0.04 sat 0.03 unknown 7.14
init2i 1 sat 0.22 sat 0.17 timeout 325.38
initcte 1 sat 0.22 sat 0.09 timeout 324.81
partialcopy 1 sat 2.57 sat 0.65 sat 195.17
reverse 1 sat 3.79 sat 2.48 sat 95.94
strcpy 1 sat 4.52 sat 0.54 sat 26.62
strlen 1 sat 0.27 sat 0.16 sat 125.21
swapncopy 1 sat 54.10 timeout 299.01 timeout 326.28
memcpy 1 sat 4.05 sat 0.61 timeout 331.34
initeven 1 sat 1.32 sat 0.71 timeout 321.19 divisibility constraints added to help the solver
mergeinterleave 1 sat 39.49 sat 4.61 timeout 322.39 invariants “hints” added to help the solver

Incorrect problems, “unsat” expected (recent Z3 can find counterexamples withN = −1 on all examples)
copyodd buggy 1 unsat 0.06 unsat 0.06 unsat 6.30
initeven buggy 1 unsat 0.07 unsat 0.06 unsat 5.23
reverse buggy 1 unsat 2.46 unsat 2.02 unsat 57.99
swapncopy buggy 1 unsat 1.01 unsat 0.90 unsat 29.23
mergeinterleave buggy 1 unsat 2.68 unsat 0.74 unsat 28.44

Table 2. Other array-manipulating programs, including various sorting algorithms.The striked out result is likely a bug in Z3; the
alternative is a bug in Spacer, since the same system cannot be satisfiable and unsatisfiable at the same time.

# benchmark N Z3/PDR Z3/SPACER ELDARICA comments
result time result time result time

fill1D check full 1 sat 0.20 sat 0.11 timeout 307.77
fill1D check full 1 timeout 299.14 timeout 299.01 unknown 6.37
bin search check 1 sat 1.49 sat 0.29 crash 1.41
bin search check -1 sat 0.09 sat 0.06 1.43
find mini check 1 sat 2.66 sat 0.39 sat 91.64
find mini check -1 sat 1.20 timeout 299.23 unknown 10.49
revrefill1D check buggy 1 unsat 0.09 unsat 0.07 unsat 11.57
revrefill1D check buggy -1 unsat 0.04 unsat 0.16 unknown 7.17
array fill2D 1 sat 0.5 sat 0.5 sat 8.5 manual translation
selection sort (sortedness) 2 sat 200 timeout 600 timeout 335
selection sort (sortedness) 2 unsat 83 sat 48 timeout 334 manual translation
selection sort (permutation) 1 timeout 600 sat 9.24 timeout 336 manual translation
bubble sort 2 timeout 300 sat 80 timeout 339
bubble sort -1 sat 0 sat 0 sat 6.72
insertion sort 2 sat 1.26 sat 1.36 sat 112
insertion sort -1 sat 0 sat 0 sat 5

Furthermore, we have run into numerous problems with
solvers, including one example that, on successive versions
of the same solver, produced “sat” then “unknown” and
finally “unsat”, as well as crashes.

For all these reasons, we believe that solving times should
not be regarded too closely. The purpose of our experimental
evaluation is not to benchmark solvers relative to each other,
but to show that our abstraction, even though it is incom-
plete, is powerful enough to lead to fully automated proofs
of functional correctness of nontrivial array manipulations,
including sorting algorithms. Tools for solving Horn clauses

are still in their infancy and we thus expect performance and
reliability to increase dramatically.

7. Related work
7.1 Cell-based abstractions
Smashing The simplest abstraction for an array is to
“smash” all cells into a single one — this amounts to re-
moving the k component from our first Galois connection
(Def. 6). The weakness of that approach is that all writes
are treated as “may writes” or weak updates: a[i] := x adds
the value x to the set of values admissible for the array a,
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but there is no way to remove any value from that set. Such
an approach thus cannot treat initialization loops (e.g. Pro-
gram 1) precisely.

Exploding At the other extreme, for an array of stati-
cally known finite length N (which is common in embed-
ded safety-critical software), one can distinguish all cells
a[0], . . . , a[N − 1] and treat them as separate variables
a0, . . . , aN−1. This is a good solution when N is small, but
a terrible one when N is large: i) many analysis approaches
scale poorly with the number of active variables ii) an ini-
tialization loop will have to be unrolled N times to show it
initializes all cells. Both smashing and exploding have been
used with success in the Astrée static analyzer [5, 6].

Slices More sophisticated analyses [12, 14, 15, 26, 27] dis-
tinguish slices or segments in the array, their boundaries de-
pending on the index variables. For instance, in array initial-
ization (Program 1), one slice is the part already initialized
(indices < i), the other the part yet to be initialized (indices
≥ i). In the simplest case, each slice is “smashed” into a
single value, but more refined analyses express relationships
between slices. Since the slices are segments [a, b] of indices,
these analyses generalize poorly to multidimensional arrays.
Also, there is often a combinatorial explosion in analyzing
how array slices may or may not overlap.

Cornish et al. [9] implement a similar approach by a
program-to-program translation over the LLVM intermedi-
ate representation, followed by a scalar analysis.

To our best knowledge, all these approaches factor through
our Galois connections−−→←−−α

γ
,−−−−→←−−−−

α2<

γ2<
or combinations thereof:

that is, their abstraction can be expressed as a composition of
our abstraction and further abstraction — even though our
implementation of the abstract transfer functions is com-
pletely different from theirs. Our approach, however, sepa-
rates the concerns of i) abstracting array problems to array-
less problems ii) abstracting the relationships between dif-
ferent cells and indices.

Fluid updates Dillig et al. [13] extend the slice approach
by introducing “fluid updates” to overcome the dichotomy
between strong and weak updates. They specifically exclude
sortedness from the kind of properties they can study.

7.2 Array removal by program transformation
Monniaux and Alberti [25] analyze array programs by trans-
forming them into array-free programs. They use the same
Galois connections (−−→←−−α

γ
, −−−−→←−−−−

α2≤

γ2≤
) as us, but i) they imple-

ment their analysis by a program-to-program transformation
ii) their abstraction is weaker than ours

The Horn clauses corresponding to the encoding of the
“read” operation in their approach are the same as ours but

with some antecedents dropped, thus over-approximate ours:

i 6= k ∧ I]1(x, i, k, ak) =⇒ I]2(x, v, i, k, ak) (54)

I]1(x, i, i, v) =⇒ I]2(x, v, i, i, v) (55)

Their approach is strictly less precise than ours; for in-
stance it cannot directly prove that an array initialization fol-
lowed by a loop that checks every element of the array and
sets a flag if the element is incorrect never sets its flag. They
(Sec. 5.5) are sometimes able to recover the loss of precision
induced by their abstractions by applying a form of quanti-
fier elimination; we do not need that.

Another difficulty they obviously faced was the limita-
tions of the back-end solvers that they could use. The inte-
ger acceleration engine FLATA severely limits the kind of
transition relations that can be considered and scales poorly.
The abstract interpreter CONCURINTERPROC can infer dis-
junctive properties (necessary to distinguish two slices in an
array) only if given case splits using observer Boolean vari-
ables; but the cost increases greatly (exponentially, in the
worst case) with the number of such variables.

7.3 Instantiation in Horn clauses
Bjørner et al. [3] propose an approach for solving universally
quantified Horn clauses: a Horn clause (∀x P (x, y)) →
Q(y), not handled by current solvers, is abstracted by
P (x1(y))∧· · ·∧P (xn(y))→ Q(y) where the xi are heuris-
tically chosen instantiations. Our approach can be construed
as an application of their approach to the axioms of arrays,
with specific instantiation heuristics.

We improve on their interesting contribution in several
ways. i) Instead of presenting our approach as a heuristic
instantiation scheme, we show that it corresponds to specific
Galois connections, which clarifies what abstraction is done
and what kind of properties can or cannot be represented.

ii) We handle sortedness properties. None of their exam-
ples deal with sortedness and it is unclear how their instanti-
ation heuristics would behave on them.

iii) We handle multisets (and thus permutation properties)
by reduction to arrays. It is possible that our approach in this
respect can be described as an instantiation scheme over the
axioms for arrays (including the multiset of array contents),
but, again, it is unclear how their instantiation heuristics
would behave in this respect.

Their approach has not been implemented except in pri-
vate research prototypes; we could not run a comparison.16

7.4 Predicate abstraction, CEGAR and array
interpolants

There exist a variety of approaches based on counterexample-
guided abstraction refinement using Craig interpolants [22–
24]. In a nutshell, Craig interpolants are predicates suitable

16 In particular, their approach is not implemented in Z3 (personal commu-
nication from N. Bjørner).
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for proving, using Hoare triples, that some unfolding of the
execution cannot lead to an error state. They are typically
obtained by reprocessing the proof of unsatisfiability of the
unfolding produced by an SMT solver.

Generating good interpolants from purely arithmetic
problems is already a difficult problem, and generating good
universally quantified interpolants on array properties has
proved even more challenging [1, 2, 19].

7.5 Acceleration
It is possible to compute exactly the transitive closure of
some transition relations, and thus to summarize some loop
exactly. The class of transition relations supported is how-
ever restricted.

Bozga et al. [7] have proposed a method for accelerat-
ing certain transition relations involving actions over arrays,
which outputs the transitive closure in the form of a counter
automaton. Translating the counter automaton into a first-
order formula expressing the array properties however re-
sults in a loss of precision.

8. Conclusion and perspectives
We have proposed a generic approach to abstract programs
and universal properties over arrays (and, more generally,
arbitrary maps) by syntactic transformation into a system
of Horn clauses without arrays, which is then sent to a
solver. This transformation is powerful enough to prove,
fully automatically and within minutes, that the output of
selection sort is sorted and is a permutation of the input.

While some solvers have difficulties with the kind of
Horn systems that we generate, some (e.g. SPACER) are
capable of solving them quite well. We have used the stock
version of the solvers, without help from their designers or
special tuning, thus higher performance is to be expected in
the future. Indeed, we feel the kind of systems we generate
would make good benchmarks for Horn solvers. If the solver
cannot find the invariants on its own, it can be helped by
partial invariants from the user.

As shown by experiments, our approach significantly im-
proves on the procedures currently built in array-capable
SMT-solvers, as well as earlier approaches for inferring
quantified invariants over arrays, which typically cannot
prove sorting algorithms.

Refinement We are investigating an approach for counter-
example-based refinement of the analysis. We however have
so far not needed it for proving programs correct.

Existentials Our approach cannot infer witnesses for ex-
istentials. Future work could include quantifier instantiation
heuristics for existentials.

Backward analysis Our rules are for “forward analysis”:
they express that if configuration is possible at one step dur-
ing one execution, then some configuration may be possi-
ble at the next step during that execution. We thus define a

super-set of all states reachable from program initialization,
and the desired property is proved if this set is included in
the property.

An alternative approach is “backward analysis”: find a
super-set of the set of all states reachable from a property vi-
olation, not intersecting the initial states. A possible research
direction would be to derive backward rules and compare
their efficiency to that of forward rules.

High-level maps and sets Many programming languages
provide libraries for finite maps and (multi)sets. In this arti-
cle, we have explained how to abstract some, but not all of
their features (Sec. 5.1) — for instance we do not provide
an iterator for non-integer set element types. Future work
should include reviewing their features and common usage
in order to design suitable abstractions.

Query-less analysis One advantage of some of earlier ap-
proaches (the abstract interpretation ones from Sec. 7.1 and
the program transformation from Monniaux and Alberti
[25]) is that they are capable of inferring what a program
does, or at least a meaningful abstraction of it (e.g. “at the
end of this program all cells in the array a contains 42”) as
opposed to merely proving a property supplied by the user.
Our approach can achieve this as well, provided it is used
with a Horn clause solver that does not require queries and
still provides some interesting solution (a query-less Horn
problem has a trivial solution: “true” to all predicates).

This Horn clause solver should however be capable of
generating disjunctive properties (e.g. (k < i ∧ ak = 0) ∨
(k ≥ i ∧ ak = 42)); thus a simple approach by abstract
interpretation of the Horn clauses in, say, a sub-class of
the convex polyhedra, will not do. We know of no such
Horn solver; designing one is a research challenge. Maybe
certain partitioning approaches used in sequential program
verification [17, 28] may be transposed to Horn clauses.

Objects We have considered simple programs operating
over arrays or maps, as opposed to a real-life programming
language with objects, references or, horror, pointer arith-
metic. Yet, our approach can be adapted to such languages.
One can indeed see each object field name in a language
such as Java (e.g. String x;) as a map from object references
to values (here, of type String). The reference may be an in-
dex (perhaps i if the object is the i-th object allocated) or a
more complex record of the site of allocation.

Pointers Languages with pointers, pointer arithmetic and,
worse, access to an object of a type through a pointer of an
incompatible type (not uncommon in traditional C program-
ming), can be handled by seeing the memory as an array of
bytes, but this leads to impractically inefficient analysis. It
is however often possible to segment the memory into in-
dependent variables (never accessed through pointers, or at
least accessed only through pointers at known locations) and
a number of disjoint arrays. Our analysis can then be used
over these arrays.
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