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Lab 1
Lexing and Parsing with ANTLR4

Objective

• Understand the software architecture of ANTLR4.
• Be able to write simple grammars and correct grammar issues in ANTLR4.

Todo in this lab:
• Install and play with ANTLR.
• Implement your own grammars.
• Understand and extend an arithmetic evaluator (with semantic actions).
• Understand our future test infrastructure for our compiler.
• Deliver a code for two of these exercises according to strict specifications.

1.1 Getting started!

EXERCISE #1 Ï Git clone
On your personal machines or on the school machines, you have to clone the git repository where all codes
will be given:

git clone https://gricad-gitlab.univ-grenoble-alpes.fr/gonnord/cs444-labs22

EXERCISE #2 Ï Tool requirements (personal machines)
Skip if you use the school machines, everything should be already installed! On your machines, you need to
install in this order

• Python3, its package manager pip and pytest and other stuff

sudo apt install python3 python3-pip
python3 -m pip install pytest pytest-cov pytest-xdist pyright --user

(pyright is not mandatory)

• An ANTLR4 python runtime (≥ 4.8), let’s use 4.9.2:

python3 -m pip install antlr4-python3-runtime==4.9.2 --user

• The adequate ANTLR4 jar file:

mkdir ~/lib # or anywhere else.
cd ~/lib
wget https://www.antlr.org/download/antlr-4.9.2-complete.jar

• You may need to install java on your machine:

sudo apt install default-jre
sudo apt install default-jdk

EXERCISE #3 Ï System paths (all machines), only todo ONCE

Adapt your ~/.bashrc (or Documents_distants/.bashrc) to your configuration 1, for instance on my
machine I have:

1on school machines use /opt/antlr-4.9.2-complete.jar
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export CLASSPATH=".:$HOME/lib/antlr-4.9.2-complete.jar:$CLASSPATH"
export ANTLR4="java -jar $HOME/lib/antlr-4.9.2-complete.jar"
alias antlr4="java -jar $HOME/lib/antlr-4.9.2-complete.jar"

Then source your .bashrc:

source ~/.bashrc

If ANTLR4 is set correctly, then typing:

$ antlr4

in your terminal should output a documentation.

1.2 Simple examples with ANTLR4

1.2.1 Structure of a .g4 file and compilation

Links to a bit of ANTLR4 syntax:

• Lexical rules (extended regular expressions): https://github.com/antlr/antlr4/blob/master/doc/
lexer-rules.md

• Parser rules (grammars)https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

The compilation of a given .g4 (for the PYTHON back-end) is done by the following command line if you
modified your .bashrc properly (note: antlr4, not antlr which may also exist but is not the one we want):

antlr4 -Dlanguage=Python3 filename.g4

1.2.2 Up to you!

EXERCISE #4 Ï Demo files
Work your way through the two examples (open them in your favorite editor!) in the directory demo_files:

ex1: lexer grammar and PYTHON driver A very simple lexical analysis2 for simple arithmetic expressions of
the form x+3. To compile, run:

antlr4 -Dlanguage=Python3 Example1.g4

This generates a lexer in Example1.py (you may look at its content, and be happy you didn’t have to write
it yourself) plus some auxiliary files. We provide you a simple main.py file that calls this lexer (this one is
hand-written and readable):

python3 main.py

(or type make run, which re-generates the lexer as needed and runs main.py).
To signal the program you have finished entering the input, use Control-D (you may need to press it twice).
Examples of runs: [ˆD means that I pressed Control-D]. What I typed is in boldface.

1+1
^D^D
[@0,0:0=’1’,<2>,1:0]
[@1,1:1=’+’,<1>,1:1]
[@2,2:2=’1’,<2>,1:2]
[@3,4:3=’<EOF>’,<EOF>,2:0]
)+
^D^D

2Lexer Grammar in ANTLR4 jargon
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line 1:0 token recognition error at: ’)’
[@0,1:1=’+’,<1>,1:1]
[@1,3:2=’<EOF>’,<-1>,2:0]
%

Questions:
• Reproduce the above behavior.
• Read and understand the code.
• Allow for parentheses to appear in the expressions.
• What is an example of a recognized expression that looks odd (i.e. that is not a real arithmetic expres-

sion)? To fix this problem we need a syntactic analyzer (see later).
• Observe the correspondance between token names and token numbers in <..> (see the generated
Example1.token file)

• Observe the PYTHON main.py file.
From now on you can alternatively use the commands make and make run instead of calling antlr4 and

python3.

ex2: full grammar (lexer + parser) and PYTHON driver Now we write a grammar for valid expressions. Ob-
serve how we recover information from the lexing phase (for ID, the associated text is $ID.text). The grammar
includes Python code and therefore works only with the PYTHON driver.

If these files read like a novel, go on with the other exercises. Otherwise, make sure that you understand
what is going on. You can ask the Teaching Assistant, or another student, for advice.

From now you will write your own grammars. Be careful the ANTLR4 syntax use unusual conventions:
“Parser rules start with a lowercase letter and lexer rules with an upper case.”a

ahttps://stackoverflow.com/questions/11118539/antlr-combination-of-tokens

EXERCISE #5 Ï Well-founded parenthesis
Write a grammar and files to make an analyser that:

• skips all characters but ’(’, ’)’, ’[’, ’]’ (use the lexer rule CHARS: ~[()[\]] -> skip ; for it)

• accepts well-formed parenthesis.

Thus your analyser will accept “(hop)” or “[()](tagada)” but rejects “plop]” or “[)”. Test it on well-chosen
examples. Begin with a proper copy of ex2, change the name of the files, name of the grammar, do not forget the
main and the Makefile, and THEN, change the grammar to answer the exercise.

EXERCISE #6 Ï Another grammar
Write a grammar that accepts the language {anb2n}. Letters other than a and b, and spaces are ignored, other
symbols are rejected by the lexer.

Important remark From now on, we will use Python at the right-hand side of the rules. As Python is sensitive
to indentation, there might be some issues when writing on several lines. You can often avoid the problem by
defining a function in the Python header and then call it in the right-hand side of the rules.

1.3 Grammar Attributes (actions), ariteval/ directory

Until now, our analyzers are passive oracles, i.e. language recognizers. Moving towards a “real compiler”, a next
step is to execute code during the analysis, using this code to produce an intermediate representation of the
recognized program, typically ASTs. This representation can then be used to generate code or perform pro-
gram analysis (see next labs). This is what attribute grammars are made for. We associate to each production
a piece of code that will be executed each time the production is processed/recognized. This piece of code is
called semantic action and computes attributes of non-terminals.
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We consider a simple (commented) grammar of non empty lists of arithmetic expressions:

P → S + // + denotes a list and EOF is implicit

S → E ; // expressions are followed by a semicolon

E → E +E

E → E ∗E

E → F

F → i nt // int denotes any constant int value provided by the lexer

F → (E)

The object of the demo is to understand how semantic actions work, and also to play with the test infrastruc-
ture we will use in the next labs.

EXERCISE #7 Ï Test the provided code (ariteval/ directory)
First, have a look on the README.md file which gives you some information. You will have to edit it later. Now,
have a look onto the grammar in file Arit.g4. Remark how each grammar rule has been implemented. Each
grammar rule is followed by a semantic action at its right-hand side.

To test the provided code, just type:

1. Type

make && python3 arit.py tests/test-plus.txt

This should print:

1+2 = 3

on the standard output. It seems that you have been given a calculator code !

2. Type:

make test

This should print:

test_ariteval.py::TestEVAL::test_expect[./tests/test-mult.txt] FAILED [ 50%]
test_ariteval.py::TestEVAL::test_expect[./tests/test-plus.txt] PASSED [100%]

================================================= FAILURES =================================================
_______________________________ TestEVAL.test_expect[./tests/test-mult.txt] ________________________________

self = <test_ariteval.TestEVAL object at 0x7f5be113a100>, filename = ’./tests/test-mult.txt’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_expect(self, filename):

expect = self.get_expect(filename)
eval = self.evaluate(filename)

> assert expect == eval
E AssertionError: assert testresult(ex...’1+3*2 = 7\n’) == testresult(exi...1+3*2 = 43\n’)
E At index 1 diff: ’1+3*2 = 7\n’ != ’1+3*2 = 43\n’
E Full diff:
E - testresult(exitcode=0, output=’1+3*2 = 7\n’)
E ? ^
E + testresult(exitcode=0, output=’1+3*2 = 43\n’)
E ? ^^

test_ariteval.py:24: AssertionError
==================================== 1 failed, 1 passed in 0.18 seconds ====================================

This test means that you have been given only a partial solution ! Indeed, the semantic action for
* given in the skeleton (Arit.g4) is obviously buggy. As the diagnosis suggests, the skeleton returns 43
when it should return 7.
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EXERCISE #8 Ï Understand the test infrastructure
We saw in the previous exercice an example for test run. In the repository, we provide you a script that enables
you to test your code 3. It tests files of the form tests/test*.txt. Just type:

make test

and your code will be tested on these files.

We will use the same exact script to test your code in the next labs (but with our own test cases!).

A given test has the following behavior: if the pragma // EXPECTED is present in the file, it compares the
actual output with the list of expected values (see tests/test01.txt for instance). There is also a special
case for errors, with the pragma // EXITCODE n, that also checks the (non zero) return code n if there has
been an error followed by an exit.

The following (two) exercises are due on Chamilo. Instructions and deadline on Chamilo too.

EXERCISE #9 Ï Play with the testsuite
As we saw above, the skeleton is buggy, and we only have two test cases.

1. Fix the code of the semantic action for * in Arit.g4, re-run make test and check that you have no
failure.

2. Write one test, in ./tests/test-mult-parents.txt that checks the proper evaluation of the expres-
sion (1+3)*2, to make sure you understand the test infrastructure.

In an ideal world, we should also check the behavior in case of syntax error, but ANTLR’s error-recovery mech-
anism makes this a bit too tricky, so we won’t do it in this lab.

EXERCISE #10 Ï Add features
Implement binary and unary minus. Test. Be careful with operators precedence and associativity to simplify,
you can make as if - is prioritary to +. Unary minus can apply to any expression (--1 is accepted, with the
same meaning as Python). Of courses, you will have to write adequate tests for these new features.

1.4 Bonus !

If you have finished in advance, we provide you a bonus exercice in the bonus/ directory.

3This infrastructure is based on pytest, you can have a quick look at the test_*.py to understand it. These files do the following: for
each test file, execute the code on it, and compare its output with the specification written at the end in comments.
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Lab 2
Warm-up : the target machine : RISCV

Objective

• Be familiar with the RISCV instruction set.
• Understand how it executes on the RISCV processor with the help of a simulator.
• Write simple programs, assemble, execute.

2.1 The RISCV processor, instruction set, simulator

EXERCISE #1 Ï Lab preparation
Save your modifications from the last lab, then pull the lab repository.

EXERCISE #2 Ï Installations - Linux machines at Esisar
On the Esisar machines, all installations have been done for you. However, you might have to add some stuff
in your PATH.

EXERCISE #3 Ï Installations - on your machines
See the README.md in the repository.

EXERCISE #4 Ï RISCV C-compiler and simulator, first test
In the directory TP_RISCV/startup/:

• Compile the provided file ex1.c with:
riscv64-unknown-elf-gcc ex1.c -o ex1.riscv
It produces a RISCV binary.

• Execute the binary with the RISCV simulator:
spike pk ex1.riscv
This should print 42. If you get a runtime exception, try running spike -m100 pk ex1.riscv instead:
this limits the RAM usage of spike to 100 MB (the default is 2 GB).

• The corresponding RISCV can be obtained in a more readable format by:
riscv64-unknown-elf-gcc ex1.c -S -o ex1.s -fverbose-asm
(have a look at the generated .s file!)

The objective of the CS444 sequence of labs will be to design our own (subset of ) C compiler for RISCV.

EXERCISE #5 Ï Documents
Some documentation about the RISCV ISA can be found on the Chamilo webpage.

EXERCISE #6 Ï A first RISCV program
On paper, write (in RISCV assembly language) a program which initializes the t0 register to 1 and increments
it until it becomes equal to 8.

2.1.1 Assembling, disassembling

EXERCISE #7 Ï Hand assembling, simulation of the hex code
Assemble by hand (on paper) the instructions:

1 .globl main
2 main:
3 addi a0, a0, 1
4 bne a0, a0, main
5 end:
6 ret
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You will need the set of instructions of the RISCV machine and their associated opcode. All the info is in
the ISA documentation.

To check your solution (after you did the job manually), you can redo the assembly using the toolchain:

riscv64-unknown-elf-as -march=rv64g asshand.s -o asshand.o

asshand.o is an ELF file which contains both the compiled code and some metadata (you can try hexdump
asshand.o to view its content, but it’s rather large and unreadable). The tool objdump allows extracting the
code section from the executable, and show the binary code next to its disassembled version:

riscv64-unknown-elf-objdump -d asshand.o

Check that the output is consistent with what you found manually.
From now on, we are going to write programs using an easier approach. We are going to write instructions

using the RISCV assembly.

2.2 RISCV Simulator

EXERCISE #8 Ï Execution and debugging
See https://www.lowrisc.org/docs/tagged-memory-v0.1/spike/ for details on the Spike simulator.

test_print.s is a small but complete example using Risc-V assembly. It uses the println_string,
print_int, print_char and newline functions provided to you in libprint.s. Each function can be called
with call print_... and prints the content of register a0 (call newline takes no input and prints a new-
line character).

1. First test assembling and simulation on the file test_print.s:
riscv64-unknown-elf-as -march=rv64g test_print.s -o test_print.o

2. The libprint.s library must be assembled too:
riscv64-unknown-elf-as -march=rv64g libprint.s -o libprint.o

3. We now link these files together to get an executable:
riscv64-unknown-elf-gcc test_print.o libprint.o -o test_print
The generated test_print file should be executable, but since it uses the Risc-V ISA, we can’t execute it
natively (try ./test_print, you’ll get an error like Exec format error).

4. Run the simulator:
spike pk ./test_print
The output should look like:
bbl loader
HI CS444!
42
a
The first line comes from the simulator itself, the next two come from the println_string, print_int
and print_char calls in the assembly code.

5. We can also view the instructions while they are executed:
spike -l pk ./test_print
Unfortunately, this shows all the instructions in pk (Proxy Kernel, a kind of mini operating system), and
is mostly unusable. Alternatively, we can run a step-by-step simulation starting from a given symbol. To
run the instructions in main, we first get the address of main in the executable:
$ riscv64-unknown-elf-nm test_print | grep main
000000000001014c T main
This means: main is a symbol defined in the .text section (T in the middle column), it is global (capital
T), and its address is 1014c. Now, run spike in debug mode (-d) and execute code up to this address
(until pc 0 1014c, i.e. “Until the program counter of core 0 reaches 1014c”). Press Return to move to
the next instruction and q to quit:
$ spike -d pk ./test_print
: until pc 0 1014c
bbl loader
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:
core 0: 0x000000000001014c (0xff010113) addi sp, sp, -16
:
core 0: 0x0000000000010150 (0x00113423) sd ra, 8(sp)
:
core 0: 0x0000000000010154 (0x0000e517) auipc a0, 0xe
:
core 0: 0x0000000000010158 (0x41450513) addi a0, a0, 1044
: q
$

Remark: For your labs, you may want to assemble and link with a single command (which can also do the
compilation if you provide .c files on the command-line):

riscv64-unknown-elf-gcc -march=rv64g libprint.s test_print.s -o main

In real-life, people run compilation+assembly and link as two different commands, but use a build system like
a Makefile to re-run only the right commands.

EXERCISE #9 Ï Algo in RISCV assembly
Write (in fact, complete minmax.s between TODO and END TODO) a program in RISCV assembly that com-
putes the min of two integers, and stores the result in a precise location of the memory that has the label min.
Try with different values. We use 64 bits of memory to store ints, i.e., use .dword directive and ld and sd
instructions.

EXERCISE #10 Ï Routines in assembly (read-only exercise)
In len.swe give you an exemple of a routine and a call to this routine (using a stack). Read and explain why we
need to save the ra register on the stack. Illustrate for instance by removing the routine prelude and postlude
and making a call to an external printing function.

EXERCISE #11 Ï Caesar code

The following exercise only will be graded. Instructions and deadline on Chamilo too.

Create a file named str_codecesar.s, starting with:

1 # Code de César en RISCV
2 # CS444, binôme : NOM1, NOM2
3 .section .text
4 .globl main
5 main:
6 addi sp,sp,-16
7 sd ra,8(sp)
8

9 ...

A chain s being stored in memory, as well as a dec number, compute the Caesar code of the chain: shift
every letter value by dec.

Your code should print the input string and the encoded one (thanks to a call to print_string. For in-
stance, with the Hello World chain and a dec equal to 4:

Hello world!
Lipps${svph%
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Lab 3
Interpreters and Types

Objective

• Understand visitors.
• Implement typers, interpreters as visitors.

The evaluator will be graded. Instructions and deadline on Chamilo too.

EXERCISE #1 Ï Lab preparation
git pull will provide you all the necessary files for this lab in TP03 and MiniC. ANTLR4 and pytest should
be installed and working like in Lab 1, if not 1:
python3 -m pip install --user pytest pytest-cov pytest-xdist
python3 -m pip install --user --upgrade coverage

3.1 Demo: Implicit tree walking using Visitors

This is a demo and a startup. Nothing has to be put on Chamilo for this section

3.1.1 Interpret (evaluate) arithmetic expressions with visitors

In the first lab, we used an “attribute grammar” to evaluate arithmetic expressions during parsing. Today,
we are going to let ANTLR build the syntax tree entirely, and then traverse this tree using the Visitor design
pattern2. A visitor is a way to seperate algorithms from the data structure they apply to.

For every possible type of node in your AST, a visitor will implement a function that will apply to nodes of
this type.

EXERCISE #2 Ï Demo: arithmetic expression interpreter (TP03/arith-visitor/)
Observe and play with the Arit.g4 grammar and its PYTHON Visitor on myexample :
$ make ; make ex
Note that unlike the “attribute grammar” version that we used previously, the .g4 file does not contain Python
code at all.

Have a look at the AritVisitor.py, which is automatically generated by ANTLR4: it provides an abstract
visitor whose methods do nothing except a recursive call on children. Have a look at the MyAritVisitor.py
file, observe how we override the methods to implement the interpreter, and use print instructions to observe
how the visitor actually works (print some node contents).

Also note the #blabla pragmas after each rules in the g4 file. They are here to provide ANTLR4 a name
for each alternative in grammar rules. These names are used in the visitor classes, as method names that get
called when the associated rule is found (eg. #foo will get visitFoo(ctx) to be called).

We depict the relationship between visitors’ classes in Figure 3.1.

1The second line is not always needed but may solve compatibility issues between versions of pytest-cov and coverage, yielding
pytest-cov: Failed to setup subprocess coverage messages in some situations.

2https://en.wikipedia.org/wiki/Visitor_pattern
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Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 3.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTreeVisitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particular type (here Multiplication). This process is depicted by the red cycle.

Example: when a ANTLR4 rule contains an operator alternative such as:

| expr addop=(PLUS | MINUS) expr #additiveExpr

you can use the following code in your implementation of visitAdditiveExpr to match the operator:

if ctx.addop.type == AritParser.PLUS:
...

To get the list of the two expr operands of the rule, you can use ctx.expr(). To get e.g. the second expr
operand, you can use ctx.expr(1). Be careful: if there is only one expr (for instance in the visitParens
case) then ctx.expr() (and not ctx.expr(0) !) gives you the operand.

In other words, what you can write in Python code is dictated by the .g4 file.

The objective is now to use visitors, to type and interpret MiniC programs, whose syntax is depicted in Fig-
ure 3.2.
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grammar MiniC;

prog: function* EOF #progRule;

// For now, we don't have "real" functions, just the main() function
// that is the main program, with a hardcoded profile and final
// 'return 0'.
function: INTTYPE ID OPAR CPAR OBRACE vardecl_l block

RETURN INT SCOL CBRACE #funcDef;

vardecl_l: vardecl* #varDeclList;

vardecl: typee id_l SCOL #varDecl;

id_l
: ID #idListBase
| ID COM id_l #idList
;

block: stat* #statList;

stat
: assignment SCOL
| if_stat
| while_stat
| print_stat
;

assignment: ID ASSIGN expr #assignStat;

if_stat: IF OPAR expr CPAR then_block=stat_block
(ELSE else_block=stat_block)? #ifStat;

stat_block
: OBRACE block CBRACE
| stat
;

while_stat: WHILE OPAR expr CPAR body=stat_block #whileStat;

print_stat
: PRINTLN_INT OPAR expr CPAR SCOL #printlnintStat
| PRINTLN_FLOAT OPAR expr CPAR SCOL #printlnfloatStat
| PRINTLN_BOOL OPAR expr CPAR SCOL #printlnboolStat
| PRINTLN_STRING OPAR expr CPAR SCOL #printlnstringStat

Figure 3.2: MiniC syntax. We omitted here the subgrammar for expressions

EXERCISE #3 Ï Be prepared!
In the directory MiniC/ (outside TP03/), you will find:

• The MiniC grammar (MiniC.g4).
• Our “main” program (MiniCC.py) which will be the driver of our compiler:
python3 MiniCC.py
usage: MiniCC.py [-h] --mode {parse,typecheck,eval} [--debug]

[--disable-typecheck]
filename

In this lab, you will use –mode typecheck or –mode eval The driver will launch the parsing of the input
file, then the Typing visitor, and if the file is well typed, the Interpreter visitor.

• One complete visitor: TP03/MiniCTypingVisitor.py, and one to be completed: TP03/MiniCInterpretVisitor.py.

• Some test cases, and a test infrastructure.
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3.2 Typing the MiniC-language (MiniC/)

The code of the typer is completely given to you. The objective is here to read and understand code. The ex-

plicit questions are only to help you in this purpose. They will not be graded.
The informal typing rules for the MiniC language are:
• Variables must be declared before being used, and can be declared only once ;
• Binary operations (+, -, *, ==, !=, <=, &&, ||, . . . ) require both arguments to be of the same type (e.g.
1 + 2.0 is rejected) ;

• Boolean and integers are incompatible types (e.g. while(1) is rejected) ;
• Binary arithmetic operators return the same type as their operands (e.g. 2. + 3. is a float, 1 / 2 is the

integer division) ;
• + is accepted on string (it is the concatenation operator), no other arithmetic operator is allowed for

string ;
• Comparison operators (==, <=, . . . ) and logic operators (&&, ||) return a Boolean ;
• == and != accept any type as operands ;
• Other comparison operators (<, >=, . . . ) accept int and float operands only.
For now, we do not consider real functions, so all your test cases will contain only a main function, with-

out argument and returning an integer. We will extend your code and write test-cases with several function
definitions and calls in a further lab.

EXERCISE #4 Ï Demo: play with the Typing visitor
We provide you the code of the typer for the MiniC-language, whose objective is to implement the typing rules
of the course. Open and observe TP03/MiniCTypingVisitor.py.

Answer the following questions:
• Find the visitor base fonctions. How are their names constructed from the grammar rules (look at the g4

file) ?
• What are the basic types used in our Typer ?
• How is a typing exception handled ?
• Have a specific look at the assignment visitor (“ID=expr”): what is its name in the code ? What it is

supposed to do ? Observe how it handles the type of the expression and the type of the variable.
Now predict the behavior of the typer on the following MiniC input:
int x;
x="blablabla";
type make to generate lexer, parser and visitor files. Then, launch the “compiler” in typer mode with:
python3 MiniCC.py --mode=typecheck TP03/tests/provided/examples-types/bad_type00.c
Observe the behavior of the visitor on all test files in example-types/ one by one, and answer the following
questions:

• What is the name of the function that checks for type equality ?
• How do we handle a multiplication between int and string operands?
• How do we handle an assignement between a variable and an expression with the “wrong” type?
• How to we remember the declared type for each variable? (symbol table)?

EXERCISE #5 Ï Demo: test infrastructure for bad-typed programs
On incorrectly typed programs, what we expect from a good test infrastructure is that is is capable of checking
if we handled properly the case. This is solved by augmenting the pragma syntax of the previous lab. For
instance:
int x;
x="blablabla";
// EXPECTED
// In function main: Line 5 col 2: type mismatch for x: integer and string
// EXITCODE 2
will be a successful test case. Any error (typing or runtime) must raise the exit code different from 0 (details
below). Now, type3:
make TEST_FILES=’TP03/**/*type*.c’ test

3If it takes time, you can temporarily remove the pyright rule in the Makefile.
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As our makefile rule tests the whole typing and evaluator, it would fail on somes cases. We only test here “bad
typing files”, for which we already know their typing failure. You should obtain:

test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type01.c] PASSED [ 16%]
test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type_bool_bool.c] PASSED [ 33%]
test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type04.c] PASSED [ 50%]
test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type00.c] PASSED [ 66%]
test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type03.c] PASSED [ 83%]
test_interpreter.py::TestInterpret::test_eval[TP03/tests/provided/examples-types/bad_type02.c] PASSED [100%]

If you get an error about the --cov argument, you didn’t properly install pytest-cov.

Note on the -unit- tests The test infrastructure is implemented for you: we test your output and compare to
the expected output. When another compiler is available (gcc, or a teacher version), we compare the different
outputs.

The test infrastructure gives you a coverage score in order to evaluate how tests cover your code. Have a
look on this score during the lab sequence.

The test infrastructure also uses pyright 4 to fast check typing annotations enabled in Python3 languages
(cf https://docs.python.org/3/library/typing.html). These typing annotations are used in provided
code to help you calling functions (enforcing the right types in function calls and returns).

Your own tests You will later add your own tests: add them all in the tests/students/ directory (manda-
torily).

3.3 An interpreter for the MiniC-language

3.3.1 Informal Specifications of the MiniC Language Semantics

MiniC is a small imperative language inspired from C, with more restrictive typing and semantic rules. Some
constructs have an undefined behavior in C and well defined semantics in MiniC:

• Variables that are not explicitly initialized in the program are automatically initialized
– to 0 for int,
– to 0.0 for float,
– to false for bool,
– to the empty string "" for string.

• Divisions and modulo by 0 must print the message “Division by 0” and stop program execution with
status 1 (use raise MiniCRuntimeError("Division by 0") to achieve this in the interpreter).

Note on printing library To allow compiling your MiniC programs with a regular C compiler (for tests, for
instance), a printlib.h file is provided, and should be #included in all your MiniC test cases5.

3.3.2 Implementation of the Interpreter

The semantics of the MiniC language (how to evaluate a given MiniC program) is defined by induction on the
syntax. You already saw how to evaluate a given expression, this is depicted in Figure 3.3.

EXERCISE #6 Ï Interpreter rules (on paper)
First fill the empty cells in Figure 3.4, then ask your teaching assistant to correct them.

EXERCISE #7 Ï Interpreter
Now you have to implement the interpreter of the MiniC-language. We give you the structure of the code and
the implementation for numerical expressions and boolean expressions (except modulo!). You can reason
in terms of “well-typed programs”, since badly typed programs should have been rejected earlier.

Type:

4https://github.com/microsoft/pyright)
5Note that unlike real C, # is a comment in MiniC to avoid actually having to deal with #include
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literal constant c
return int(c) or float(c)

variable name x
find value of x in dictionary and return it

e1+e2
v1 <- e1.visit()
v2 <- e2.visit()
return v1+v2

true return true

e1 < e2
return e1.visit()<e2.visit()

Figure 3.3: Interpretation (Evaluation) of expressions

x := e
v <- e.visit()
store(x,v) #update the value in dict

println_int(e)
v <- e.visit()
print(v) # python’s print

S1; S2
s1.visit()
s2.visit()

if b then S1 else S2

while b do S done

Figure 3.4: Interpretation for Statements

make
python3 MiniCC.py --mode=eval TP03/tests/provided/examples/test_print_int.c
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and the interpreter will be run on test_print_int.c (it should print 42 on this particular exemple). On the
particular example test_print_int.c observe how integer values are printed.

Open the interpretor source code(MiniCInterpretVisitor.py), and answer the following questions to
understand the code:

• How is the memory initialised ? (compare to the memorytypes in the typer)

• Which values types can have a mini C expression (line 7)?

• How are string variables initialized in our interpreter?

TODO You still have to implement (in MiniCInterpretVisitor.py) 6:

1. The modulo version of Multiplicative expressions (be careful to raise an exception if the operation is not
valid). The expected behavior for modulo is the same than in Python, in which % can have 2 floating
arguments:
laure@vernet:~/$ python3
Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 3%2
1
>>> 3%2.9
0.10000000000000009
>>> 8.9%2.9
0.20000000000000062
>>> 9.2%0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: float modulo

2. Variable declarations (varDecl) and variable use (idAtom): your interpreter should use a table (dict in
PYTHON) to store variable definitions and check if variables are correctly defined and initialized. Do
not forget to initialize dict with the initial values (0, 0.0, False or "" depending on the type) for all
variable declarations. Refer to the test files bad_xxx.c for the expected error messages.

3. Statements: assignments, conditional blocks, tests, loops.

Test your implementation after each new feature:
python3 MiniCC.py --mode=eval /path/to/example/.c

Error codes The exit code of the interpreter should be:
• 1 in case of runtime error (e.g. division by 0, absence of main function)
• 2 in case of typing error
• 3 in case of syntax error
• 4 in case of internal error (i.e. error that should never happen except during debugging)
• 5 in case of unsupported construct (should not be used in lab3, but you will need it for strings and floats

during code generation)
• And obviously, 0 if the program is typechecked and executed without error.
The file MiniCInterpreter.py in the skeleton already does this for you if you raise the right exception.

These are also the values you will have to use in the // EXITCODE directives in your tests.

EXERCISE #8 Ï Automated tests for final delivery
The rule make test-interpret launches everything. We recall that you can use the TEST_FILES makefile
variable to launch only on a subset of your files.

You must provide your own tests. The only outputs are the one from the println_* function or the follow-
ing error messages: “m has no value yet!” (or possibly “Undefined variable m”, but this error should

6Search for NotImplementedError(), they should all be removed for the source code.
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never happen if the typechecker did its job properly) where m is the name of the variable. In case the program
has no main function, the typechecker accepts the program, but it cannot be executed, hence the interpreter
raises a “No main function in file” error.

Test Infrastructure - a bit more explanation Tests work mostly as in the previous lab, with // EXPECTED
and // EXITCODE n pragmas in the tests. They are special comments (the // is needed to keep compatibility
with C, only the testsuite considers them as special). The EXITCODE corresponds to the exit codes described in
Section 3.3.2.

For instance, if you fail test_print_int.c because you printed 43 instead of 42, using the command
make test TEST_FILES=’TP03/tests/provided/examples/test_print_int.c’
you will get this error:
_____________ TestCodeGen.test_expect[/path/test_print_int.c] _____________

self = <test_interpreter.TestCodeGen object at 0x7f0e0aa369b0>
filename = ’/path/to/test_print_int.c’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_expect(self, filename):

expect = self.extract_expect(filename)
eval = self.evaluate(filename)
if expect:

> assert(expect == eval)
E assert ’43\n1\n’ == ’42\n1\n’
E - 43
E + 42
E 1

test_interpreter.py:59: AssertionError
And if you did not print anything at all when 42 was expected, the last lines would be this instead:

if expect:
> assert(expect == eval)
E assert ’42\n1\n’ == ’1\n’
E - 42
E 1

test_interpreter.py:59: AssertionError
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Lab 4
Syntax-Directed Code Generation

Objective

During the previous lab, you have written your own interpreter of the MiniC language. In this lab the objective
is to generate valid RISCV codes from MiniC programs:

• Generate 3-address code for the MiniC language.
• Generate executable “dummy” RISCV from programs in MiniC via two simple allocation algorithms.
• Please follow instructions and COMMENT YOUR CODE!

Student files are in the Git repository.

Startup On the Esisar machines

1. copy your former saved bashrc.

2. edit your bashrc to use Python 3.10:
PATH=/opt/bin:$PATH

All : Make sure your Git repository is up-to-date, using git pull. (We already pushed the directory for
next lab MiniC/TP05, ignore it)

4.1 Preliminaries

This section must be read carefully.

Important remark From now on, we add the following restriction to the MiniC language: Values (variables,
argument of println_int) are of type (signed) int or bool only (no float, no string). Thus all values can
be stored in regular registers or in one cell (64 bits) in memory. You can let your program crash (raise
MiniCUnsupportedError(...)) if another type of variable is provided.

Note that real compilers would perform the code generation from a decorated AST (with type annotations
attached to nodes). For simplicity, we will work on the non-decorated AST: our language is simple enough to
generate code without decorations.

Structure of the compiler’s code In the MiniC/Lib folder, we provide you with many utility functions. A de-
tailed documentation of the library is given in the repository, you can access it offline by openingdocs/index.html
in a web browser.

As for other files in the MiniC directory:

• TP04/MiniCCodeGen3AVisitor.py is the code generation algorithm, implemented as a visitor.

• The main Python file, MiniCC.py as in lab3, now accepts new options related to code generation (check
python3 MiniCC.py --help for a full list). Runningpython3 MiniCC.py --mode codegen-linear <file>
launches the chain: production of 3-address code with temporaries, allocation, replacement, print.

• The script test_codegen.py will help you test your code. We will use it in Section 4.3 through Makefile
targets.

• The README-codegen.md file is to be completed progressively during the lab.

EXERCISE #1 Ï RISCV Simulator - test
Re-test the command-line version of the RISCV simulator, for example with code given in the TP_RISCV di-
rectory.

Laure Gonnord, Christophe Deleuze 21/45



Esisar, filière IR&C CS444 Lab #4 – 2022/23

cd ../TP_RISCV/riscv/
riscv64-unknown-elf-gcc libprint.s test_print.s -o test_print.riscv
spike -m100 pk test_print.riscv
cd ../../MiniC/

4.1.1 Conventions used in the assembly code

• All data items are stored on 64 bits (double-words, 8 bytes).

• Registers s1, s2, and s3 are reserved for temporary computations (e.g. to compute an address before or
after an sd or a ld, or to store a value between a memory access and an arithmetic operation). Note that
s0 is an alias for fp, hence s0 must not be used as a general purpose register either.

• Registers s4, ..., s11, t0, ..., t6 are general purpose registers, that can be used freely by the code genera-
tor. In your Python code, you can access the list of general-purpose registers with Operands.GP_REGS.
si and ti registers will behave differently in presence of function calls, but are considered equivalent
for us, since we don’t deal with functions.

• To store properly in memory, it is mandatory to compute offsets from the “reserved” register fp. To be
compatible with the RISCV ecosystem, we will use a stack growing with decreasing addresses. Thus
data in the stack is accessed by adding a negative offset (multiple of 8) to fp. In other words, we use the
memory locations -8(fp), -16(fp), . . . The sp register points to the first data contained in the stack. It
is always 16-byte (2 double-words) aligned.

• Registers a1 to a7 are not used at all

EXERCISE #2 Ï Understand the library
Look at the library files and find registers, and understand the data structure behind a riscv code. Carefully look
at the typing idioms in Python (perhaps you should refer yourself to https://coderslegacy.com/python/
typing-library/), for instance to understand what an union is.

4.1.2 Conventions used in the testsuite

A few reminders and new features of the testsuite:

• Test files should contain directives giving the expected behavior:

– // EXPECTED and the following lines to give the expected output;

– // EXITCODE n gives the expected return code of the compiler, i.e. // EXITCODE 1 when the
code should be rejected by your typechecker (see previous lab for the specification of different exit
codes);

– // SKIP TEST EXPECTED to specify that this test should not be ran through test_expect (see
below);

• Several tests can be run on each .c files:

– test_expect, that compiles the file using riscv64-unknown-elf-gcc. It checks that EXPECTED
directives are correct, but doesn’t test your compiler.

– test_naive_alloc, test_alloc_mem, test_smart_alloc that compiles the file using your com-
piler, using the corresponding register allocation algorithm. The testsuite leaves generated .s files
next to the .c source file.

4.2 First step: three-address code generation

In this section you have to implement the course rules in order to produce RISCV code with temporaries.
These rules are given in Figure 4.2 on page 29 and Figure 4.3 on page 30.

Here is an example of the expected output of this part. From the following MiniC program:
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#include "printlib.h"

int main() {
int a,n;
n = 1;
a = 7;
while (n < a) {
n = n+1;

}
println_int(n);
return 0;

}
the following code is supposed to be generated.

1 ##Automatically generated RISCV code, MIF08 & CAP
2 ##non executable 3-Address instructions version
3

4

5 ##prelude
6 # [...] Some automatically generated code that will be explained in a future lab
7

8 ##Generated Code
9 # [...] Some automatically generated code that will be explained in a future lab

10 li temp_0, 0
11 li temp_1, 0
12 # (stat (assignment n = (expr (atom 1))) ;)
13 li temp_2, 1
14 mv temp_0, temp_2
15 # (stat (assignment a = (expr (atom 7))) ;)
16 li temp_3, 7
17 mv temp_1, temp_3
18 # (stat (while_stat while ( (expr (expr (atom n)) < (expr (atom a))) ) (

stat_block { (block (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1)))
) ;)) })))

19 lbl_begin_while_1_main:
20 li temp_4, 0
21 bge temp_0, temp_1, lbl_end_relational_3_main
22 li temp_4, 1
23 lbl_end_relational_3_main:
24 beq temp_4, zero, lbl_end_while_2_main
25 # (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1)))) ;)
26 li temp_5, 1
27 add temp_6, temp_0, temp_5
28 mv temp_0, temp_6
29 j lbl_begin_while_1_main
30 lbl_end_while_2_main:
31 # (stat (print_stat println_int ( (expr (atom n)) ) ;))
32 mv a0, temp_0
33 call println_int
34 # [...] Some automatically generated code that will be explained in a future lab
35

36 ##postlude
37 # [...] Some automatically generated code that will be explained in a future lab

EXERCISE #3 Ï 3-address code generation
In the skeleton, we provide you an incomplete MiniCCodeGen3AVisitor.py (find the TODOs). To test it, type
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python3 MiniCC.py --mode codegen-linear TP04/tests/provided/step1/test00.c --reg-alloc=none
Don’t forget to run make before if you need to regenerate the lexer and parser with ANTLR (i.e. if python3 com-
plains with No module named ’MiniCLexer’). Observe the generated code in <samepath>/test00.s1. You
now have to implement the 3-address code generation rules seen in the course. Code and test incrementally2:

• We give you the code generation for the println_int instruction. It basically produces a call to the
proper function in the library.

• Implement numerical expressions without variables (constants are expected to hold on 64 bits, no boolean
expression for now). We advise you to postpone the implementation of MultiplicativeExpr, and first fin-
ish this Lab without them (details are given section 4.6).

• Then check that (numerical) expressions with variables work (assignment and usage of variables in ex-
pressions are given);

At this step, the code generation is not finished. In the next steps, we will do some allocation to be able
to test properly. All examples in tests/provided/step1 directory should generate code without any error at
this point:

for i in TP04/tests/provided/step1/*.c; do
echo "file="$i; python3 MiniCC.py --mode codegen-linear --reg-alloc=none $i >/dev/null;

done

4.3 Testing with the trivial allocator (and real RISCV instructions)

The code generated at this point is not executable since it uses temporaries. We provide you with an allocation
method which allocates temporaries in registers as long as possible, and fails if there is no more available
registers. The process takes as input the former 3-address code and transforms each instruction according to
the allocation function.

EXERCISE #4 Ï Testing the trivial allocator
Open, read, understand theNaiveAllocator implementation inLib/Allocator.py (https://drup.github.
io/cap-lab22/api/Lib.Allocator.html#Lib.Allocator.NaiveAllocator) and how it is used to per-
form the actual RISCV code generation 3. Then, intensively test your former code generation with this alloca-
tor 4:

make TEST_FILES="TP04/tests/provided/step1/*.c" test-naive MODE=codegen-linear

This script tests all files specified in TEST_FILES (or, if not specified, all files in the */tests/* directories
except those whose name start with a special character):

• if the pragma // EXPECTED is present in the file, it compares the actual output after assembling and
simulating with the list of expected values. For instance:

int main(){
int x, y;
x = 42;
println_int(x);
y = x + 8;
println_int(y);
return 0;

}
// EXPECTED
// 42
// 50

is an example test case to test assignments.

1We generated RISCV comments with MiniC statements for debug.
2Using files in the TP04/tests/* directories. All the test files you use will have to be in your archive.
3All available registers are in a list named GP_REGS.
4Be careful, this allocator fails if there is more than a certain number of temporaries!
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• If the AllocationError exception is raised by the naive allocator, the test is considered “skipped” (i.e.
it’s not a failure, but not really a success either, we can’t conclude; the same test case will be used for
other allocation strategies).

• If the compilation succeeded, it compares the actual output after assembling and simulating to the
// EXPECTED statements given in the file (which are themselves compared to the output given by
riscv64-unknown-elf-gcc).

• For debugging, you can obviously launch your compiler manually with e.g.
pyright &&
python3 MiniCC.py --mode codegen-linear --reg-alloc naive --stdout <file>

Run python3 MiniCC.py --help or see MiniCC.py for more options. The --debug option allows get-
ting some debug output. Alternatively, you can run the testsuite on a single test file with:
make TEST_FILES=TP04/tests/provided/test_while2b.c test-naive MODE=codegen-linear

• When making tests with make test-naive, a coverage of your code is created in a folder htmlcov. You
can look at the file TP04_MiniCCodeGen3AVisitor_py.html to check which part of your code has been
executed during the tests. If some lines of code you wrote have been missed during the tests, then you
must write your own tests for these parts!

At this step, the tests should be OK or SKIPPED for all files given in directory tests/step1/:
make test-naive MODE=codegen-linear
[...]
============================= xx passed, xx skipped in xx seconds ========

Now that we have a way to test our code generation for tiny MiniC codes, we can come back to it.

4.4 Finish 3 address code generation

Now that you know how to test your code using the naive allocator, go back to code generation and finish it.

EXERCISE #5 Ï A few corner-cases
Some points may require extra care, in the implementation or in the tests:

• Don’t forget the automatic initialization (in MiniC, unlike real C). Unlike the interpreter, initialization
cannot be done by initializing a Python dictionary. Make sure the initialization code is properly gener-
ated.

• Don’t forget the explicit errors for division by zero. We provide you a piece of assembly code raising
the error (see LinearCode.print_code() and follow the trail), you need to generate the instruction to
jump to this label (we get the label withself._current_function.fdata.get_label_div_by_zero())
when the right operand of a division or modulo is 0.

• float and string are unsupported. The compiler raises MiniCUnsupportedErrorwhen encountering
any of them. Tests are provided for this.

Note that testing the division by 0 requires a bit of attention. We need to check that the executable exits
with code 1 at runtime, that the output is correct, but we can’t check that GCC gives the same behavior because
GCC doesn’t give a clean error message. A test case may therefore be:
#include "printlib.h"

int main(){
println_int(1 / 0);
return 0;

}
// SKIP TEST EXPECTED
// EXECCODE 1
// EXPECTED
// Division by 0
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EXERCISE #6 Ï End of 3-address code generation for MiniC
Implement the 3-address code generation rules:

• for boolean expressions and numerical comparison: compute 1 (true) or 0 (false) in the destination
register; be careful the not boolean instruction is not as easy as you wish;

• while loops;
• if then else.

At this point all the tests should be ok for all files in directory TP04/tests/provided/step2/. However these
tests are not sufficient, you should add some other ones (in the directory TP04/tests/students/). Run the
testsuite with make test-naive MODE=codegen-linear to use all the test files.

About if and while For tests (and boolean expressions), make sure you generate “conditional jumps” with:

self._current_function.add_instruction(
RiscV.conditional_jump(label, op1, cond, op2))

where op1 (resp op2) is the left operand (resp right operand or the numerical constant 0, nothing else), i.e. a
register or a value of the boolean condition cond (Condition(’beq’) for equality, for instance) 5, and label
is a label to jump to if the condition evaluates to true.

4.5 RISCV code with “all-in-mem” allocation of temporaries

Tests Up to now, you used make test-naive MODE=codegen-linear to test your code, and at this point all
tests should pass, or be skipped (do not forget to make a test where the naive allocation uses too many regis-
ters!) From now on, you should use the more complete make test-lab4 MODE=codegen-linear command,
that tests everything with the provided naive allocator, and the all-in-memory allocator you have to write. If
you use MiniCC.py directly, the corresponding option is --reg-alloc=all-in-mem.

Check that make test-lab4 MODE=codegen-linear does fail.

Implementation As the number of registers for allocation is bounded by the number of available general
purpose registers, i.e. len(Operands.GP_REGS), the naive allocator cannot deal with more temporaries than
general-purpose registers: we have to find a way to store the results elsewhere. In this particular lab, we will
use the following solution:

• The generated code will use memory locations in the stack.
• All values that are propagated from one rule to another (sub-expressions, . . . ) must be stored in the stack,

whose address will be stored in F P .
• s1, s2, s3 will be used to compute the value to store or as a destination register for the value(s) to read.

Technically, only 2 of these registers are mandatory, but you should be cautious if you try a 2-registers-
only solution.

• In order to know if a given (temporary) operand should be read and/or written, use the is_read_only
method of the Instruction class.

Figure 4.1 depicts the stack implementation for the RISCV machine, that follows the RISC-V calling convention
(stack growing downwards, stack-pointer always 16-bytes aligned).

Following the convention that fp always stores the “begining of stack address”, pushing the content of
register s3 in the stack will be done following the steps:

• compute a new offset (call to the fresh_offset method).
• generate the following instruction:

sd s3, -offset*8(fp)
# sd = store double = 64-bits store
# -offset*8(fp) = memory location at address fp-offset*8

Getting back the value is similar.

5We suggest to use grep and find this class definition and this method somewhere in the library we provide.
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Figure 4.1: Memory model for RISCV

EXERCISE #7 Ï Manual translation
Complete the expected output for the following two statements (13/15 lines of RISCV code). The temporary
temp_3 is located at −32(fp) and temp_4 is located at −40(fp):
int x, y;
x=4;
y=12+x

Listing 4.1: ’all in mem alloc for test_while2b.c’

1 ##Generated code without prelude and postlude
2 # (stat (assignment x = (expr (atom 4))) ;)
3 # li temp_2, 4
4 li s2, 4
5 sd s2, -24(fp)
6 # end li temp_2, 4
7 # mv temp_1, temp_2
8 ld s1, -24(fp)
9 mv s2, s1

10 sd s2, -16(fp)
11 # end mv temp_1, temp_2
12 # (stat (assignment y = (expr (expr (atom 12)) + (expr (atom x)))) ;)
13 # li temp_3, 12
14 # TODO 2 lines
15

16

17 # end li temp_3, 12
18 # add temp_4, temp_3, temp_1
19 # TODO 4 lines
20

21

22

23

24 # end add temp_4, temp_3, temp_1
25 # mv temp_0, temp_4
26 # NOT TODO

Laure Gonnord, Christophe Deleuze 27/45



Esisar, filière IR&C CS444 Lab #4 – 2022/23

EXERCISE #8 Ï Implement
Now you are on your own to implement this code generation. The relevant file isTP04/AllInMemAllocator.py.
Here are the main steps (less than 50 locs of PYTHON):

1. We have implemented for you an AllInMemAllocator.prepare() method. This method only maps
each temporary to a new offset in memory (in a PYTHON dict), allowing you to use the methodget_alloced_loc()
on an Temporary used in the code.

2. Complete the methodAllInMemAllocator.replace(old_instr) that takes as input a “3-address with
temporaries” RISCV code and outputs a list of instructions as a replacement. For instance, each time
we access a source operand, we have to load it from memory before, thus the replace should contain
something like

# regxxx is the register used to hold the value between the load and
# the operation itself (one of s1, s2, s3).
# loc is the place in memory where the temporary is allocated (of
# the form Offset(..., fp), obtained with get_alloced_loc().
before.append(RiscV.ld(regxxx, loc))

The files you generate have to be tested with the RISCV simulator with the same script as before. Of course,
with “all-in-mem” allocation, tests that were “skipped” due to the lack of registers with the naive allocation
should not be skipped any more.

More tests Now that your compiler can deal with a large number of temporaries, make sure all features are
heavily tested (the testsuite we provide is in no way sufficient).

4.6 Multiplicative Expressions (multiplication, division, modulo)

EXERCISE #9 Ï 3-address code generation for multiplicative expressions
If not already done, extend your work to multiplicative expressions. Conventions for division and multiplica-
tion should be the same as in C: division is truncated toward zero, and modulo is such that (a/b)∗b+a%b = a.

4/3 = 1 4%3 = 1
(−4)/3 = −1 (−4)%3 = −1
4/(−3) = −1 4%(−3) = 1

(−4)/(−3) = 1 (−4)%(−3) = −1

4.7 Delivery

This lab will be graded, but you have more than the habitual amount of time to finish it. Instructions will follow
on Chamilo.

EXERCISE #10 Ï Delivery - grading criteria
Python code and C testcases will be graded. We recall that your work is personal (pairs are allowed) and code
copy from any source or sharing is strictly forbidden. As usual, upload an archive containing the whole MiniC
directory (make tar does that for you).

Do not forget to edit README-gencode.md.
Evaluation criteria:

• Correctness of your code generator

• Correctness of your allocator

• Correctness of the annotations (// EXPECTED, ...) in your test files.

• Coverage of your testsuite (on the MiniCCodeGen3AVisitor.py and SimpleAllocations.py source
files)

Laure Gonnord, Christophe Deleuze 28/45



Esisar, filière IR&C CS444 Lab #4 – 2022/23

c

dest <- fresh_tmp()
code.add("li dest, c")
return dest

x

# get the temporary associated to x.
reg <- symbol_table[x]
return reg

e1+e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dest <- fresh_tmp()
code.add("add dest, t1, t2")
return dest

e1-e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dest <- fresh_tmp()
code.add("sub dest, t1, t2")
return dest

true

dest <-fresh_tmp()
code.add("li dest, 1")
return dest

e1 < e2

dest <- fresh_tmp()
t1 <- GenCodeExpr(e1)
t2 <- GenCodeExpr(e2)
endrel <- new_label()
code.add("li dest, 0")
# if t1>=t2 jump to endrel
code.add("bge endrel, t1, t2")
code.add("li dest, 1")
code.addLabel(endrel)
return dest

Figure 4.2: 3@ Code generation for numerical or Boolean expressions
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x = e

dest <- GenCodeExpr(e)
loc <- symbol_table[x]
code.add("mv loc, dest")

S1; S2

# Just concatenate codes
GenCodeSmt(S1)
GenCodeSmt(S2)

if b then S1 else S2

lelse <- new_label()
lendif <- new_label()
t1 <- GenCodeExpr(b)
#if the condition is false, jump to else
code.add("beq lelse, t1, 0")
GenCodeSmt(S1) # then
code.add("j lendif")
code.addLabel(lelse)
GenCodeSmt(S2) # else
code.addLabel(lendif)

while b do S done

ltest <- new_label()
lendwhile <- new_label()
code.addLabel(ltest)
t1 <- GenCodeExpr(b)
code.add("beq lendwhile, t1, 0")
GenCodeSmt(S) # execute S
code.add("j ltest") # and jump to the test
code.addLabel(lendwhile) # else it is done.

Figure 4.3: 3@ Code generation for Statements
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Lab 5
Code generation with smart IRs

Objective

• Understand the CFG construction.
• Compute live ranges, construct the interference graph.
• Allocate registers and produce final “smart” code.
• Two sessions for this lab.
• Lab delivery: with Lab4, all together, on Chamilo. Instructions and deadline on Chamilo. Do not

forget massive tests (on each step of the smart allocation.)

5.1 Preliminaries

(save your lab4 somewhere before doing anything else). First, get the latest version of the skeleton with:
git pull

If you get painful conflicts, you may re-clone the whole repository (see lab 1).
Be careful to not crash your last Lab (especially the file : TP04/MiniCCodeGen3AVisitor.py). Some files

should be updated in this directory.
During the previous lab, you wrote a dummy code generator for the MiniC language. In this lab the objec-

tive is to generate a more efficient RISCV code.

You will extend your previous code (in the second part of the lab, see Section 5.4, in the same MiniC
project, but in the TP05/ subdirectory

Installations We are going to use graphviz for visualization. If it is not already installed (e.g. on your personal
machine), install it, for instance with:

sudo apt-get install graphviz graphviz-dev

You may have to install the following PYTHON packages:

python3 -m pip install --user networkx
python3 -m pip install --user graphviz
python3 -m pip install --user pygraphviz

If the last command errors out complaining about a missing Python.h, run:

sudo apt-get install python3-dev

and then relaunch the command python3 -m pip install ... On the Esisar machines, you might

have to update existing already installed packages:
python3 -m pip install --user --upgrade networkx graphviz pygraphviz

5.2 CFG construction

The CFG construction is given, you only have to understand how it is implemented. (The code to observe is
in the MiniC/TP04/ directory).

During class we presented Control Flow Graphs with maximal basic blocks. In this section we will read and
understand how this CFG generation is implemented.

During this phase, the linear code produced in the 3-address code generation produces a graph.
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EXERCISE #1 Ï CFG By hand
What is the expected result of the CFG construction for each of these programs?

Listing 5.1: df01.c

int n,u,v;
n=6;
u=12;
v=n+u;
print_int(v);

Listing 5.2: df04.c

int x;
x=2;
if (x < 4)

x=4;
else

x=5;
print_int(x)

Listing 5.3: df05.c

int x;
x=0;
while (x < 4){

x=x+1;
}

5.2.1 Understand provided code

In TP04/BuildCFG.py we give you the entire code for the CFG construction (whose datastructure is defined
in the Lib).

EXERCISE #2 Ï Finding the leaders
In the course on intermediate representations, we have defined the notion of basic blocks and leaders, which
designate the indices of the instructions starting a block. We define the _find_leaders procedure as taking
the list of instructions and returning a list of leaders. The list of indices leaders should have the following
properties:

• leaders[i] is the starting instruction of block i .
• Each interval leaders[i] to leaders[i+1]-1 delimits the instructions of a block.
• We have leaders[0]=0 (first block) and leaders[-1]=len(instructions).
• There are no duplicated indices in the list.

Compute the leaders by hand on the following example.

0 subi temp2, temp2, 4
1 beq temp2, zero, lelse1
2 li temp4, 7
3 mv temp1, temp4
4 jump lendif1
5 lelse1:
6 addi temp3, temp2, 1
7 mv temp1, temp3
8 lendif1:

EXERCISE #3 Ï Understand CFG Construction (file TP04/BuildCFG.py)
The CFG file contains all the utilities related to Control Flow Graphs:

• the Block class, representing a basic block,
• the CFG class, representing a complete function in CFG form.

Blocks have a list of predecessors (self._in) and successors (accessible via the Terminator of the block
and the function CFG.out_blocks(block)) and a CFG contains the initial control point (self._start) from
which we can traverse the graph. This feature allows us to construct the CFG of a program.

The procedure to build the CFG is split into several pieces. The __init__ function builds the class and sets
all utility counters. The _find_leaders function returns a list of all the leaders. The _add_blocks function
populates the control flow graph with the blocks extracted using the list of leaders.

• Is the _find_leaders implementation conform to the one of the course?

• How is the chaining realized in the case of forward reference ? backward reference ?

EXERCISE #4 Ï Check and test your CFGs
When run with --graphs, MiniCC.py prints the CFG as a PDF file (using the tool “dot”). The file is printed as
<name>.dot.pdf in the same directory as the source file and opened automatically.

Check the output for all files in TP04/tests/provided/dataflow/ with the following command line:
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python3 MiniCC.py --mode codegen-cfg --reg-alloc naive \
--graphs TP04/tests/provided/dataflow/df02.c

For example, the CFG for df02.c should look like:

lbl_div_by_zero_0_main:
    la a0, lbl_div_by_zero_0_main_msg
    call println_string
    li a0, 1
    call exit
    return

lbl_end_relational_2_main:
    and temp_8, temp_7, temp_2
    mv a0, temp_8
    call println_int
    li a0, 0
    return

lbl_main_6_main:
    li temp_7, 1
    j lbl_end_relational_2_main

lbl_end_relational_1_main:
    mv temp_2, temp_5
    li temp_6, 1
    li temp_7, 0
    bge temp_6, temp_1, lbl_end_relational_2_main, lbl_main_6_main

lbl_main_5_main:
    li temp_5, 1
    j lbl_end_relational_1_main

lbl_main_4_main:
    li temp_0, 0
    li temp_1, 0
    li temp_2, 0
    li temp_3, 6
    mv temp_1, temp_3
    li temp_4, 12
    li temp_5, 0
    ble temp_4, temp_1, lbl_end_relational_1_main, lbl_main_5_main

Observe how straight-line code, if statements, while loops are converted.

Important remark Note that register allocation does not affect the CFG printed by --graphs, as it is output
before register allocation. In the rest of the lab, your compiler should do the allocation on the CFG, and all the
tests from the previous lab should still pass (with –reg-alloc all-in-mem option).

5.3 Liveness analysis and Interference graph

Be prepared! From now on, we work in MiniC/TP05/ directory. You should ignore the file LivenessSSA.py,
which will not be used this year.

In order to implement the “smart allocation”, you have to modify MiniC/TP05/SmartAllocator.py.You
already used NaiveAllocator and AllInMemAllocator in the previous lab (the mapping from temporary
to physical register or memory location was provided to you, and you had to modify the 3 address code
to take this mapping into account). We will now write the SmartAllocator, that maps temporaries to
physical registers in an optimized way, and use memory (spilling) only when necessary. Read the body of
SmartAllocator.prepare(), that gives the main steps of the allocation:

• liveness dataflow analysis,

• conflict graph,

• graph coloring

• and finally 3 address code modification to get the final executable.

Similarly to previous lab, SmartAllocator.rewriteCode() then applies the allocation to the generated code.
To help you with debugging, a raise NotImplementedError statement in prepare stops the execution.
Move it down as you progress in the lab, and remove it completely when you are done.

For the liveness analysis, we recall the notations. A variable at the left-hand side of an assignment is killed
by the block. A variable whose value is used in this block (before any assignment) is generated.

LVexi t (ℓ) =
{
; if ℓ= final⋃

{LVentr y (ℓ′)|(ℓ,ℓ′) ∈ f low(G)}

LVentr y (ℓ) = (
LVexi t (ℓ)\ki l lLV (ℓ)

)∪ g enLV (ℓ)

The sets are initialised to ; and computed iteratively, until reaching a fixpoint.
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EXERCISE #5 Ï Liveness Analysis, Implement the Initialisation
In this exercice, you have to complete the method set_gen_kill() of the CFG.Block class. This method is
called for each block by LivenessDataFlow.set_gen_kill() and initialises the Gen(B) and Kill(B) sets for
each basic block (add, let, ...) in the program. To help you, each instruction provides a .defined() (respec-
tively .used()) method that returns the set of temporaries assigned (respectively used) in the instruction. Be
careful to properly handle the following cases:

1 addi temp1, temp1, 12

and

1 bge temp_1, temp_3, lbl_foo # temp_1 is read from

To test/debug this initialisation, the following statements in SmartAllocator.py (in
SmartAllocator.prepare()) should help you (use with MiniCC.py --debug, which sets debug=True
for you):

if self._debug:
self._liveness.print_gen_kill()

As an example, once initialization is implemented, running the command (without –graphs!)
python3 MiniCC.py --mode codegen-cfg --debug --reg-alloc smart TP05/tests/provided/dataflow/df02.c
should give the expected initialisation for TP05/tests/provided/dataflow/df02.c:
Dataflow Analysis, Initialisation
block lbl_div_by_zero_0_main : 0
gen: {}
kill: {}

block lbl_end_relational_2_main : 1
gen: {temp_7,temp_2}
kill: {temp_8}

block lbl_main_6_main : 2
gen: {}
kill: {temp_7}

block lbl_end_relational_1_main : 3
gen: {temp_1,temp_5}
kill: {temp_6,temp_7,temp_2}

block lbl_main_5_main : 4
gen: {}
kill: {temp_5}

block lbl_main_4_main : 5
gen: {}
kill: {temp_0,temp_2,temp_3,temp_4,temp_5,temp_1}

Note:

• If you ran the compiler with --graphs, the CFG should be displayed in a graphical window. The names
of basic blocks in the text output correspond to the leading label in the blocks shown in the graphical
window.

• Only temporaries are shown. Block lbl_div_by_zero_0_main uses physical registers but no tempo-
rary, hence gen and kill sets are empty.
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EXERCISE #6 Ï Liveness Analysis, fixpoint. (Only test!)

We implemented for you the fixpoint iteration as a method (run_dataflow_analysis) in
SmartAllocator.py “while it is not finished, store the old values, do an iteration, decide if its finished”.
The run_dataflow_analysis method makes calls to dataflow_one_step instruction methods. The result
(liveness information is stored in member sets of the ._liveness attribute of the SmartAllocator class).

What you have to do in this exercice is to check that the results that are obtained with with analysis are
correct at least for the examples of the TP05/tests/provided/dataflow/ directory.

To do so, the following lines should help you (again, using --debug) in the same file:

self._liveness.run() #compute liveness sets
if self._debug:

self._liveness.print_map_in_out()

As an example, here is the expected output for TP05/tests/provided/dataflow/df02.c:
Dataflow Analysis
finished in 2 iterations
In: {lbl_div_by_zero_0_main: {},
lbl_end_relational_2_main: {temp_7,temp_2},
lbl_main_6_main: {temp_2},
lbl_end_relational_1_main: {temp_1,temp_5},
lbl_main_5_main: {temp_1}, lbl_main_4_main: {}}

Out: {lbl_div_by_zero_0_main: {}, lbl_end_relational_2_main: {},
lbl_main_6_main: {temp_7,temp_2},
lbl_end_relational_1_main: {temp_7,temp_2},
lbl_main_5_main: {temp_1,temp_5},
lbl_main_4_main: {temp_1,temp_5}}

EXERCISE #7 Ï Interference graph: Implement interfere
The interference graph contains an edge (x, y) if temporaries x and y are in conflict. It is built by
SmartAllocator.build_interference_graph, that calls the interfere method.

We recall that two temporaries x, y are in conflict if they are simultaneously alive after a given instruction1,
which means:

• There exists an instruction i and x, y ∈ LVout (i )
• OR There exist an instruction i such that x ∈ LVout (i ) and y is defined in the instruction
• OR the converse.

To understand why the last two cases are needed, consider the following list of instructions:
// Can x and y be mapped to the same place? Obviously not.
y=2
x=1 // dead assignment
println_int(y)
x=666 // x not live before this

The live ranges of x and y are disjoint, however x is in conflict with y since we generate the code for x=1 while
y is alive2.

From the result of the previous exercise, the code in LivenessDataFlow builds a
self._liveness._liveout field of type Dict[Instruction, Set[Operand]] that gives the set of
temporaries that are live after a given instruction3. Use this data to construct the interference graph (the
job is done by function build_interference_graph) of your program. We give you a undirected graph API
(Lib/Graphes.py) for that. Use the print_dot (it should be called with the –graph option) method and
relevant tests to validate your code.

1yes, an instruction, not a block
2Another solution consists in eliminating dead code before generating the interference graph.
3The dataflow analysis is indeed performed at the block level, and a postanalysis is run afterwards to get the information at the instruc-

tion level.
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In this exercise, we care about correctness more than complexity. It is OK to write an O(n3) algorithm (for
each t1, for each t2, for each control point c, check whether t1 and t2 have a conflict).

As an example, here is the conflict graph that should be obtained for df02.c (command line as usual):

temp_0

temp_1

temp_2

temp_5 temp_6

temp_7

temp_3temp_4 temp_8

5.4 “Smart’ register allocation and code production

We will implement the following algorithm for register allocation:
• Color the interference graph with an infinite number of colors, using the first ones as much as possible.
• The first len(GP_REGS) colors will be mapped to registers.
• All the other variables will be allocated on the stack. For each color, we use a memory location according

to their coloring number.
Then the 3 address code modification:

• For non-spilled variable: replace the temporary with its associated color/register, as we did for the naive
allocator.

• For spilled variables: add ld / sd statements as needed and replace the temporary with one of s1, s2, s3
as we did for the “all in mem” allocator.

Some help:

• GP_REGS is an array of registers available for the register allocator.

• An element of type Register can be obtained from a given register color with the helper function
GP_REGS[coloringreg[xxx]], where coloringreg is graph coloring returned by the .color() func-
tion, and for offsets you have the method self._function_code.new_offset() that returns a fresh
one (all in Operands.py).

• The easiest way to build alloc_dict is probably to iterate over all the temporaries of the program (avail-
able in self._function_code._pool._all_temps), and for each temporary check the corresponding
color to associate it to the right register or memory location in alloc_dict.

EXERCISE #8 Ï Smart Register Allocation: implement!
In this exercice, you have first to complete method SmartAllocation.smart_alloc() to perform an allo-
cation based on a graph coloring. The purpose of this method is to allocate a physical register or a memory
location for each temporary in the program. Next, you will have to complete the function replace_smart()
that replaces the temporary operands of a given instruction according to the allocation computed by
smart_alloc().
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Use the algorithm and the coloration method of the LibGraphes class to allocate registers (or a mem-
ory location) in smart_alloc(). Comments will help you design this (non trivial) function. The allocation
is followed by statement rewriting, like in previous lab. You need to implement it in SmartAllocation.py
(replace_smart): it is very similar to the previous lab’s version, but you have to deal with both memory loca-
tions and registers in the same function.

Validate your allocation on tiny well chosen test files (especially tests that augment the register pressure)
and all the benchmarks of the previous lab. We adapted the previous script for that.

Each color+shape pair indicates a different location. Temp numbering and coloring may be different in
your output.

EXERCISE #9 Ï Massive tests
Debug, . . . and test on all test files you have (test cases in TP05/tests/students, please). The testsuite must
not open any PDF file (this is normally OK since it launches the compiler without the --debug option).

5.5 Final delivery

Instructions will be given on Chamilo. Lab 4 and Lab 5 will be delivered at the same time, and the two com-
mands make test-lab4 and make test-codegen should perform correctly.
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Appendix A
RISCV Assembly Documentation (ISA), rv64g

About

• RISCV is an open instruction set initially developed by Berkeley University, used among others by West-
ern Digital, Alibaba and Nvidia.

• We are using the rv64g instruction set: Risc-V, 64 bits, General purpose (base instruction set, and exten-
sions for floating point, atomic and multiplications), without compressed instructions. In practice, we
will use only 32 bits instructions (and very few of floating point instructions).

• Document: Laure Gonnord and Matthieu Moy, for CAP and MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the RISCV assembler and simulator, follow instructions of the first lab (git pull on the course lab repos-
itory).

A.2 The RISCV architecture

Here is an example of RISCV assembly code snippet (a proper main function would be needed to execute it,
cf. course and lab):

1 addi a0, zero, 17 # initialisation of a register to 17
2 loop:
3 addi a0, a0, -1 # subtraction of an immediate
4 j loop # equivalent to jump xx

The rest of the documentation is adapted from https://github.com/riscv/riscv-asm-manual/
blob/master/riscv-asm.md and https://github.com/jameslzhu/riscv-card/blob/master/
riscv-card.pdf

A.3 RISC-V Assembly Programmer’s Manual - “simplified”

A.3.1 Copyright and License Information - Documents

The RISC-V Assembly Programmer’s Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017

Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full li-

cense text is available at https://creativecommons.org/licenses/by/4.0/.

• Official Specifications webpage: https://riscv.org/specifications/

• Latest Specifications draft repository: https://github.com/riscv/riscv-isa-manual

This document has been modified by Laure Gonnord & Matthieu Moy, in 2019.
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A.3.2 Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on which
extensions are included: The general registers (with the program counter), control registers, floating point
registers (F extension), and vector registers (V extension). We won’t use control nor F or V registers.

General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The program counter PC is separate from
these registers, in contrast to other processors such as the ARM-32. The first register, x0, has a special function:
Reading it always returns 0 and writes to it are ignored.

In practice, the programmer doesn’t use this notation for the registers. Though x1 to x31 are all equally
general-use registers as far as the processor is concerned, by convention certain registers are used for special
tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface
(ABI). This is what you will usually see in code listings. If you really want to see the numeric register names,
the -M argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 zero hardwired to 0, ignores writes n/a
x1 ra return address for jumps no
x2 sp stack pointer yes
x3 gp global pointer n/a
x4 tp thread pointer n/a
x5 t0 temporary register 0 no
x6 t1 temporary register 1 no
x7 t2 temporary register 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 a4 function argument 4 no
x15 a5 function argument 5 no
x16 a6 function argument 6 no
x17 a7 function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 6 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 t3 temporary register 3 no
x29 t4 temporary register 4 no
x30 t5 temporary register 5 no
x31 t6 temporary register 6 no
pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman “The RISC-V Reader”
(2017)
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As a general rule, the saved registers s0 to s11 are preserved across function calls, while the argument
registers a0 to a7 and the temporary registers t0 to t6 are not. The use of the various specialized registers
such as sp by convention will be discussed later in more detail.

A.3.3 Instructions

Arithmetic

add, addi, sub, classically.
addi a0, zero, 42

initialises a0 to 42.

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the
symbol table of the compiled module.
loop:

j loop
Jumps and branches target is encoded with a relative offset. It is relative to the beginning of the current

instruction. For example, the self-loop above corresponds to an offset of 0.

Branching

Test and jump, within the same instruction:
beq a0, a1, end

tests whether a0=a1, and jumps to ‘end’ if its the case.

Absolute addressing

The following example shows how to load an absolute address:
.section .text
.globl _start
_start:

lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 000005b7 lui a1,0x0

0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_LO12_I msg

Relative addressing

The following example shows how to load a PC-relative address:
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)

addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts
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2: j 2b

.section .rodata
msg:

.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 00000597 auipc a1,0x0

0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_I .L11

Load Immediate

The following example shows the li pseudo instruction which is used to load immediate values:
li a0, 0x76543210

which generates the following assembler output as seen by objdump (generated code will be different de-
pending on the constant):

0: 76543537 lui a0,0x76543
4: 2105051b addiw a0,a0,528

Load Address

The following example shows the la pseudo instruction which is used to load symbol addresses:
.section .text
.globl _start
_start:

la a0, msg

.section .rodata
msg:

.string "Hello World\n"

A.3.4 Assembler directives (subset)

Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:

Directive Arguments Description

.align integer align to power of 2 (alias for .p2align)

.file “filename” emit filename FILE LOCAL symbol
table

.globl symbol_name emit symbol_name to symbol table
(scope GLOBAL)

.local symbol_name emit symbol_name to symbol table
(scope LOCAL)

.section [{.text,.data,.rodata,.bss}] emit section (if not present, default
.text) and make current

.size symbol, symbol accepted for source compatibility

.text emit .text section (if not present) and
make current

.data emit .data section (if not present) and
make current

.rodata emit .rodata section (if not present)
and make current
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Directive Arguments Description

.string “string” emit string

.equ name, value constant definition

.word expression [, expression]* 32-bit comma separated words

.balign b,[pad_val=0] byte align

.zero integer zero bytes

A.3.5 Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler Notation Description Instruction / Macro

%hi(symbol) Absolute (HI20) lui
%lo(symbol) Absolute (LO12) load, store, add
%pcrel_hi(symbol) PC-relative (HI20) auipc
%pcrel_lo(label) PC-relative (LO12) load, store, add

A.3.6 Instruction encoding

Credit This is a subset of the RISC-V greencard, by James Izhu, licence CC by SA, https://github.com/
jameslzhu/riscv-card

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

“imm[x:y]” means “bits x to y from binary representation of imm”. “imm[y|x]” means “bits y, then x of imm”.
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RV32I Base Integer Instructions (subset)

Inst Name FMT Opcode funct3 funct7 Description (C) Note
add ADD R 0110011 0x0 0x00 rd = rs1 + rs2
sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2
xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 0x7 0x00 rd = rs1 & rs2
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm
xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm
ori OR Immediate I 0010011 0x6 rd = rs1 | imm
andi AND Immediate I 0010011 0x7 rd = rs1 & imm
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]
lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]
lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]
sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm
bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm
blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm
bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm
bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12
auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

Laure Gonnord, Christophe Deleuze 43/45



Esisar, filière IR&C CS444 Lab #A – 2022/23

Pseudo Instructions

Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

{lb|lh|lw|ld} rd, symbol
auipc rd, symbol[31:12]

Load global
{lb|lh|lw|ld} rd, symbol[11:0](rd)

{sb|sh|sw|sd} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

{flw|fld} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

{fsw|fsd} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if ̸= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if ̸= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O

RV32M Multiply Extension (basic instructions)

Inst Name FMT Opcode funct3 funct7 Description (C)
mul MUL R 0110011 0x0 0x01 rd = (rs1 * rs2)[31:0]
div DIV R 0110011 0x4 0x01 rd = rs1 / rs2
rem Remainder R 0110011 0x6 0x01 rd = rs1 % rs2
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Appendix B
A bit of PYTHON 3 & ANTLR4

B.1 PYTHON

https://docs.python.org/fr/3.5/tutorial/
htpp://perso.limsi.fr/pointal/_media/python:cours:mementopython3.pdf

Coding Style :

https://www.python.org/dev/peps/pep-0008/

We strongly recommand to use:

flake8 filename.py

on each file.

Exceptions in PYTHON Recall that in PYTHON errors can be declared, thrown and caught as depicts Figure B.1

# declare !
class MyError(Exception):

pass

# catch!
try:

...
except MyError:

...

# launch !
raise MyError("Error␣Message")

Figure B.1: Exceptions in PYTHON

B.2 ANTLR4

A nice book:

https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference

A nice tutorial:

https://tomassetti.me/antlr-mega-tutorial/
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