

Département IMA / 4A (S8) Informatique Fondamentale 2011/2012 Laure Gonnord http://laure.gonnord.org/pro/

Exercices de TD IF - Feuille 2 Automates à piles et grammaires

Grammaires générales

Exercice 1 Quel langage est engendré par la grammaire G = (N, T, P, S) avec :

- $-N = \{S, A, B, C, D\}$
- $-T = \{a\}$
- $-P = \{S \to BAB\} \cup \{BA \to BC\} \cup \{CB \to AAB\} \cup \{CA \to AAC\} \cup \{A \to a\} \cup \{B \to \varepsilon\}.$

 $\hbox{ Exercice 2 } \textit{ Quels langages sont engendr\'es par les grammaires suivantes ? }$

- 1. $G = (\{S, A\}, \{a, b, c\}, P, S) \text{ avec } P = \{S \to aS | bA, A \to bA | c\}.$
- 2. $G = (\{S\}, \{a\}, P, S) \text{ avec } P = \{S \to aaS | aa\}.$
- 3. $G = (\{S\}, \{a\}, P, S) \text{ avec } P = \{S \to aSaaS | aaa\}$

Exercice 3 Donner des grammaires pour exprimer les langages suivants :

- 1. Les mots sur l'alphabet $\{a,b\}$ qui sont égaux à leur mot miroir.
- 2. Les mots sur $\{a,b\}$ contenant autant de a que de b.
- 3. Les mots sur $\{a, b, c\}$ contenant autant de a que de b.
- 4. $\{a^n b^m c^m d^n, n, m \ge 0\}$.

Exercice 4 Trouver des grammaires (non algébriques) qui enqendrent les langages suivants :

- $\{u \in \{0,1\}^*, \exists v \in \Sigma^*, u = vv\}$
- $\{a^n b^n c^n, n \ge 0\}$

Automates à Piles

EXERCICE 5 Soit $\Sigma = \{0,1\}$. Soit l'automate à pile $P = (Q, \Sigma, \Delta, \Gamma, q_0, Z_0, \{q_2\})$ avec $Q = \{q_0, q_1, q_2\}$, $\Gamma = \{Z_0, X\}$, et Δ la fonction de transition représentée par le tableau suivant :

éta	at	lecture	pile	nouvel état	$\dot{a}\ empiler$
q_0)	1	Z_0	q_0	X
q_0)	1	X	q_0	XX
q_0)	0	Z_0	q_2	Z_0
q_0)	0	X	q_1	ε
q_1	Ţ	0	Z_0	q_2	Z_0
q_1		0	X	q_1	ε
q_2		0	Z_0	q_2	Z_0
	`	7 7		· ·	, , ,

- Quel langage est reconnu par cet automate à pile avec reconnaissance par état final?
- et avec reconnaissance par pile vide (q_2) ?

Exercice 6 Source: http://www-pequan.lip6.fr/~graillat/teach/caldec/td4.pdf Soit l'automate avec alphabet de ruban = $\{a,b\}$ et alphabet de pile $\{Z_0,A,B\}$, état final f et la fonction

de transition:

etat	lecture	pile	nouvel état	à empiler
q_0	a	Z_0	q_1	AAZ_0
q_0	b	Z_0	q_2	BZ_0
q_0	ε	Z_0	f	ε
q_1	a	A	q_1	AAA
q_1	b	A	q_1	arepsilon
q_1	ε	Z_0	q_0	Z_0
q_2	a	B	q_3	ε
q_2	b	В	q_2	BB
q_3	ε	В	q_1	ε
q_3	ε	Z_0	q_1	AZ_0

- Vérifier que abb et bab sont reconnus par l'automate.
- Décrire le contenu de la pile après lecture de b^7a^4 .
- Quel langage est reconnu par cet automate à pile avec reconnaissance par état final f ?

Exercice 7 Si u est un mot, R(u) désigne son miroir. Construire des automates à pile (si possible déterministes) reconnaissant les langages suivants (sur l'alphabet $\{0,1\}$):

- $\{u \in \Sigma^*, u \text{ contient autant de } 0 \text{ que de } 1\}$
- $\{ u \in \Sigma^*, \exists v \in \Sigma^*, u = vR(v) \}$
- $\{ u \in \Sigma^*, u = R(u) \}$

Grammaires classiques

EXERCICE 8 Écrire de la façon la plus simple possible la grammaire des expressions bien parenthésées. Construire un arbre de dérivation pour le "mot" (((a))(a)).

Exercice 9 Écrire une grammaire qui génère les expressions "à la Lisp" :

- un entier est une expression
- $si\ e_1,\ e_2 \ldots e_k\ (k \ge 2)$ sont des expressions, alors $(+e_1e_2 \ldots e_k)$ et $(\times e_1e_2 \ldots e_k)$ sont des expressions.

Exercice 10 Écrire une grammaire pour reconnaître les expressions polynômiales.

Exercice 11 On considère une grammaire décrivant des expressions arithmétiques :

- Vérifier qu'une expression arithmétique ne peut être dérivée que d'une seule façon.
- Vérifiant que l'on peut dériver une expression arithmétique en la lisant de gauche à droite.
- Rajouter le * et le moins unaire.