Compilation and Program Analysis(#7):
Register Allocation + Data Flow Analyses
MIF08

Laure Gonnord
Laure.Gonnord@univ-lyonl.fr

Laure.Gonnord@univ-lyon1.fr

Where are we ?

source code

| lexical+syntactic analysis + typing |

decorated AST
1

\code production (numerous phases) \

7

assembly language

» We work on IRs (Middle-end).

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016

«2/36 —

Register allocation - Intro

Outline

0 Register allocation - Intro

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «3/36 —

Register allocation - Intro

Credits

Fernando Pereira’s course on register allocation:

http://homepages.dcc.ufmg.br/"fernando/classes/dcc888/
ementa/slides/RegisterAllocation.pdf

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 « 4/36 —

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf

Register allocation - Intro

What for ?

@ Finding storage locations to the values manipulated by the
program » registers or memory.

@ registers are fast but in small quantity.

@ memory is plenty, but slower access time.

» A good register allocator should strive to keep in registers the
variables used more often.

"Because of the central role that register allocation plays, T
both in speeding up the code and in making other : 'y
optimizations useful, it is one of the most important - if not 1
the most important - of the optimizations."

Hennessy and Patterson (2006) - [Appendix B; p. 26]

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «5/36 —

Register allocation - Intro

What for ?

Expected behavior of register allocation:

@ Input: a CFG with basic blocks with 3-address code (and
pseudo-registers, aka temporaries)
@ Output : same CFG but without pseudo-registers:
e replace with physical registers as much as possible.
e if not splill, ie allocate a place in memory.
o all copies assigned to the same physical registers (“moves”)
can be removed: coalescing

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «6/36 —

Register allocation - Intro

Register constraints
Some variable are assigned to some specific registers
(compiler, architecture constraints)

Li:|c =13
a =rl
b = r2
d=20
e = a
l_
Lt |[d=d + b
e=e -1
(e > 0)?goto L,

Ly: [rl = d
r3 =c¢
return

» r1,r2,r3 are used to pass function arguments here.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «7/36 —

Register allocation - Intro

The key notion: liveness

Observation
Two variables that are simultaneously alive must be assigned
different registers.

(formal definition of alive follows)

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «8/36 —

Register allocation - Intro

Register assignment is NP-complete

Theorem

Given P and K general purpose registers, is there an
assignment of the variables P in registers, such that (i) every
variable gets at least one register along its entire live range, and
(i) simultaneously live variables are given different registers ?

Gregory Chaitin has shown, in the early 80’s, that the register
assignment problem is NP-Complete (register allocation via
coloring, 1981)

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «9/36 —

Register allocation - Intro

3-phase algorithm

@ Liveness analysis
e When is a given value necessary for the rest of the
computation?
@ Interference graph

e A graph that encodes which pseudo-registers cannot be
mapped to the same location.

@ Graph coloring then register allocation.

e The effective allocation: physical registers and stack
allocation for pseudo-registers.

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «10/36 —

A tour on data-flow Analyses

Outline

@ A tour on data-flow Analyses
@ A first example: Liveness Analysis
@ Other data-flow analyses

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «11/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Outline

@ Register allocation - Intro

@ A tour on data-flow Analyses
@ A first example: Liveness Analysis
@ Other data-flow analyses

0 Back on register allocation

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «-12/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Liveness analysis

In the sequel we call variable a pseudo-register or a physical
register.

Alive Variable

In a given program point, a variable is said to be alive if the
value she contains may be used in the rest of the execution.

May: non decidable property » overapproximation.

Important remark: here a block = a statement/program point.
We have the same kind of analyses with block=basic block.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «13/36 —

A tour on data-flow Analyses

An example for live ranges

Definition

A first example: Liveness Analysis

A variable is live at the exit of a block if there exists a path from

the block to a use of the variable that does not redefine the

variable.

b

2
4;

Mo X
n
—

b

if (y>x)

then z:=y
else z=y*y ;

X:=2Z;

x is not alive here |

zis alive here

no one is alive here (end)

» The information flow is backward: from uses to definitions.

Laure Gonnord (Lyon1/FST)

Compilation (#7): Register Alloc

2016

«14/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no kill variables.

Definition
A generated variable is a variable that appears in the block.

» Sets : killpy (block) and genry (block)

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «15/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Data flow expressions

entry

Block ¢

exit

0 if £ = final

Feanl® = {U{mm<fz’>|<w'> € flow(G)}

LVentTy(f) = (LVexit(f)\k'illLv(ﬁ)) @] genLv(é)

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «16/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Data flow equation: solving

Here:
@ Initialise LV sets to 0.
@ Compute LV, sets, then LV, and continue.
@ Stop when a fix point is reached.

» (vector of) Sets are strictly growing, and the live range set is
at most the set of all variables, thus this algorithm terminates.

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «17/36 —

A tour on data-flow Analyses

A first example: Liveness Analysis

Steps

LVentry(£) denoted by In(€), LVeniry(£) by Out(£) initilisation to
emptysets is not depicted.

Step 1 Step 2 Step 3 (stable)

0| kil(l) | gen(£) In(f) | Out(f) In(f) | Out(l) In(f)
1 x [0 0 [0 0

2 y [0 0 0 {y} 0

3 z [0 {z,y} v} [{=y} {y}

4 0 {z,y} || {=,y} Yy {z, y} Yy {z, y}
5 z y Y 2 Yy z y

6 z y y 2} y} z y}

7 {z {z {z] (2 0 {z

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «18/36 —

A tour on data-flow Analyses A first example: Liveness Analysis

Final result and use

Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).

14 vaentry (6) L‘/em't (f)
1 0 0

2 0 {y}

3 {y} {z,y}
41 A=y} {y}

5 {y} {z}

6 {y} {z}

7 {z}]

» Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)

Laure Gonnord (Lyon1/FST)

Compilation (#7): Register Alloc

A tour on data-flow Analyses Other data-flow analyses

Outline

@ Register allocation - Intro

@ A tour on data-flow Analyses
@ A first example: Liveness Analysis
@ Other data-flow analyses

0 Back on register allocation

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «-20/36 —

A tour on data-flow Analyses Other data-flow analyses

Common subexpressions

Avoiding the computation of an (arithmetic) expression :

X:=a+b;

y:=axb;

while(y>a+b) do
a:=a+a;
X:=a+b;

done

» Same kind of equations.

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «-21/36 —

Back on register allocation

Outline

0 Back on register allocation

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «22/36 —

Back on register allocation

Interference

The liveness analysis gives us for a + (b + ¢):
| tmpy tmpy tmps tmps tmps tmpg

1d tmpil,la
1d tmp2,1b
1d tmp3,1lc
ADD tmp4, tmp2, tmp3
ADD tmpb5, tmp4,0
ADD tmp6, tmpl, tmpb

1

» tmpl is in conflit with tmp2 (because of instruction 3) denoted
by tmp1 > tmps.

Important remark: technically, ADD tmp5, tmp4,0 iS a move
instruction

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 « 23/36 —

Back on register allocation

Interference graph

A denotes tmp1, ... defines a graph:

We want a correct allocation with respect to x:

tmpy > tmps = Alloc(tmpy) # Alloc(tmpz).

» Graph coloring.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc

2016

«24/36 —

Back on register allocation

Running example

r3
rl
r2

[OR R o VI o]

Lg: |d d+ b
e e -1
(e > 0)?goto L,

l

Ly: |rl =d
r3 =c¢
return

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «25/36 —

Back on register allocation

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges):

Proposition (Kempe 1879)

Suppose the graph contains a node m with fewer than K
neighbours. Then if G’ = G\ {m} can be colored, then G can
be colored as well.

» Pick a low degree node, and remove it, and continue until
remove all (the graph is K-colorable) or ...

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 « 26/36 —

Kempe’s simplification algorithm 2/2

0 jo) O—O

Back on register allocation

Let’s color!

@ We assign colors to the nodes greedily, in the reverse
order in which nodes are removed from the graph.

@ The color of the next node is the first color that is available,
i.e. not used by any neighbour.

¢ d
a
2 . . E I:,
rl < I:I
2
o
3 a d 3 I:I

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 « 28/36 —

Back on register allocation

Greedy coloring example 1/2

®

i
o
[~}

o

2
rl

o

a
o

|e
[

;| ol
(=) (=)
—/
= °
=
E..Iz-lﬁz“‘
EEEE

r3

o
&
|?.|
&

¢ ()

BN
" i ‘A! :

o

|
®

wl

&
Iu
o

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «-29/36 —

Back on register allocation

Greedy coloring example 2/2

E W E

:
Laure Gonnor d (Lyon1/FST) Compilation (#7): Register Alloc 2016 «30/36 —

Back on register allocation

If the graph is not colorable

Non-colored variables are named spilled pseudo-registers.

Idea: Modify the code to lower the number of simultaneously
alive registers. Plenty of solutions, the simplier is to reserve a
dedicated place for a given spilled variable, and store and load
from memory:

ADD temp5, temp4, temp3

ADD temp6, tempb5, #5

becomes:

ADDINMEMORY [placefortemp5], temp4, temp3

ADDxx temp6, [placefortemp5], #5

But we do not have this kind of instruction in our machine!

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «31/36 —

Back on register allocation

One solution for spilled variables

We invent 2 versions of the same variable (live-range
splitting), and modify the code into:

ADD tempbl, temp4, temp3
ST tempb51 [placeinmemory]

LD tempb2 [placeinmemory]
ADD temp6, tempb2, #5

» But now we have to allocate these two new variables!

We relaunch the coloring algorithm. This is called iterative
register coloring. (see Exercise Sheet 4)

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «32/36 —

Back on register allocation

An example
Consider the following assembly code, where t1, ..., 18 are
temporaries to be allocated:

1d t1,[al]
1d t2,[a2]
sub t3,t1,t2
1d t4, [bi]
1d 5, [b2]
sub t6,t4,t5
MOV (t7,t6)
add t8,t3,t7

@ Draw the liveness intervals and the interference graph.

@ Apply the simplification coloring with K = 3 registers. Give
the final code.

@ Apply the iterative coloring with K = 2 registers. Give the
final code.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «33/36 —

Back on register allocation

Physical Memory Allocation

We will invent physical memory places from the stack pointer
(see next course).

:
Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «-34/36 —

Back on register allocation

Other Algorithms

@ Linear scan: greedy coloring of interval graphs. (see
Fernando Pereira’s slides on register allocation: 18 to 35)

o lterative Register Coalescing (George/Appel, TOPLAS,
1996) (same, from slides 44), which uses “coalesce edges”
(variables are related by move instructions).

@ Plenty of other heuristics for splilling.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «35/36 —

Back on register allocation

A nice result

Chordal graphs are P-colorable

For certain classes of graphs, graph coloring is P. This is the
case for cordal graphs where every cycle with 4 or more
edges has a chord (connects 2 vertices in the cycle but not part
of the cycle).

Important result (Sebastian Hack): Programs in strict SSA form
have this property.
» Pereira Palsberg Register allocation (APLAS 2005).

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 «36/36 —

	Register allocation - Intro
	A tour on data-flow Analyses
	A first example: Liveness Analysis
	Other data-flow analyses

	Back on register allocation

