Compilation (#8) : Functions: syntax and
code generation
MIF08

Laure Gonnord
Laure.Gonnord@univ-lyonl.fr

nov 2016



Laure.Gonnord@univ-lyon1.fr

Big picture

So far:
@ All variables were global.
@ No function call.

Inspiration: N. Louvet, Lyon1 (archi part), C. Alias (code gen
part).

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «2/29 —



Front-end

Outline

o Front-end

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «3/29 —



Front-end

Concrete syntax 1/2

@ we add variable declaration (with the var keyword):

vardecl
VAR ID ASSIGN expr

@ blocks are like before:

block
statx* #statlist
stat_block
OBRACE block CBRACE
| stat

@ procedures declaration:

declproc:
PROC ID IS stat

Laure Gonnord (Lyon1/FST)

Compilation (#8): functions

2016

«4/29 —



Front-end

Concrete syntax 2/2

And now there will two new kinds of statements:

stat
: assignment

| if_stat

| while_stat

| log

| CALL 1ID

| BEGIN declvar* declproc* block_stat END

» We can declare local procedures inside local procedures.

On board : add new concrete syntax for functions.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «5/29 —



Front-end

Abstract syntax

WLOG, we will only consider programs with procedures:

Dy
Dp

Stm

x:=a | skip | S1;5% |

if bthen S else Sy

while b do S od | begin Dy Dp; Send | cal p
var x:=a; Dy | €

proc pis S; Dp | €

Laure Gonnord (Lyon1/FST)

Compilation (#8): functions 2016

«6/29 —»



Front-end

Exercise

EX : syntax for functions

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 « 7/29 —



Syntax-Directed Code Generation

Outline

e Syntax-Directed Code Generation
@ Procedure call in LC-3
@ Code Generation for functions

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «8/29 —»



Syntax-Directed Code Generation

A Dbit about Typing

Two important remarks:

@ Now that variables are local, the typing environnement
should also be updated each time we enter a procedure.

@ Type checking for functions: construct the type from
definitions, check when a call is performed (see the course
on typing ML).

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «9/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Outline

0 Front-end

e Syntax-Directed Code Generation
@ Procedure call in LC-3
@ Code Generation for functions

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-10/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Routines

A procedure/routine in assembily is just a piece of code

@ its first instruction’s address is known and tagged with a
label.

@ the JSR instruction jumps to this piece of code (routine
call).

@ at the end of the routine, a RET instruction is executed for
the PC to get the address of the instruction after the
routine call.

Slides coming from the architecture course, N. Louvet

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «11/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how? JSR

When a routine is called, we have to store the address where to
come back:

@ syntax : JSR label

@ action : R7 <- PC ; PC <- PC + SEXT(PCoffset11)
o -1024<Sext(Offset11)<1023.
e if adl is the JSR instruction’s address, the branching
address is:
adM = adl+1+Sext(PCOffset11), with
adl — 1023 < adM < adl + 1024.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «12/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how RET

Inside the routine code, the RET instruction enables to come
back:

@ syntax : RET

@ action: PC <-R7

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-13/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Writing routines
Call to the sub routine:
Jéﬁ.sub ; R7 <- next line address
The last instruction of the routine is RET :

; sub routine
sub:

RET ; back to main

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «14/29 —



Syntax-Directed Code Generation Procedure call in LC-3

An example - strlen, without routine

.0RIG x3000
LEA RO,string B
AND R1,R1,0 5
loop: LDR R2,R0,0 5
BRz end H
ADD RO,RO,1 5
ADD R1,R1,1 5
BR loop
end: ST Rl,res
HALT

; Constant chain
string: .STRINGZ "Hello World"
res: .BLKW #1

.END

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-15/29 —



Syntax-Directed Code Generation Procedure call in LC-3

String length routine 1/2

strlen call (the result will be stored in RO).

.ORIG x3000
; Main program
LEA RO,string ; RO <- @(string)

JSR strlen ; routine call
ST RO,1gl
HALT

; Data

string: .STRINGZ "Hello World"

1gil: .BLKW #1

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016

«16/29 —»



Syntax-Directed Code Generation Procedure call in LC-3

String length routine 2/2

strlen: AND R1,R1,0 H
loop: LDR R2,R0,0 B
BRz end H
ADD RO,RO,1 5
ADD R1,R1,1 5
BR loop
end: ADD RO,R1,0 ; RO <- R1
RET ; back to main (JMP R7)
.END ; END of complete prog

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-17/29 —



Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3: chaining routines

If a routine needs to call another one:

@ Some temporary registers may have to be stored
somewhere

@ lts return address (in R7!) needs also to be stored.
» Store in the stack (R6) before, restore after.

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «18/29 —



Syntax-Directed Code Generation Code Generation for functions

Outline

0 Front-end

e Syntax-Directed Code Generation
@ Procedure call in LC-3
@ Code Generation for functions

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-19/29 —



Syntax-Directed Code Generation Code Generation for functions

Rules of the game

We still have our LC3 machine with registers:
@ general purpose registers RO to R5.
@ a stack pointer (SP), here R6.
@ a frame pointer (FP), here R7

Simplification: no imbricated function declaration.
» when call p, there is a unique p code labeled by p :

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016

«-20/29 —



Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 1/2

(picture needed)
@ Any execution instance of a function is called an
activation.
@ We can represent all the activations of a given program
with an activation tree.

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «21/29 —



Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 2/2

During execution, we need to keep track of alive activations:
@ Control stack
@ An activation is pushed when activated
@ When its over, it is poped out.
» Notion of activation record that stores the information of
one function call at execution.

» The compiler is in charge of their management.
Slides inspired by C. Alias

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «22/29 —



Syntax-Directed Code Generation Code Generation for functions

Activation record of a given function

caller of f

arguments

i return address
function

f
old ARP/FP

spilled vars

The frame pointer (ARP or FP) points to the current activation
record (first spilled variable).

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «-23/29 —



Syntax-Directed Code Generation Code Generation for functions

Code generation 1/2

For functions, we have to reserve (local) place before knowing
the number of spilled variables!

int f(x1,x2) S;
return e
code.addMacro(PUSH R7) #store Qret

code.addcopy(R6,R7) #R7<-R6

code.addCode (ADD R6 R6 xx) #xx= future nb of spilled vars
code.addCode(LDR tmpl R7 -1) #argl

code.addCode (LDR tmp2 R7 -2) #arg2 (in rev order)

CodeGenSmt (S) #under the context x1->tmpl...
dr<-CodeGen(e) #same!

code.addcopy(dr,R0) #convention return val in RO
code.addMacro(RET,2+xx) #desalloc args + spilled vars + retur

» CodeGenSmt must be called with a modified map.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «24/29 —



Syntax-Directed Code Generation Code Generation for functions

Code generation 2/2

call f(e1,e2)

Gencodesaveregisters() #save current values of reg.
dr <- newtmp

dri=Gencode(el)

code.addMacro(PUSH dr1)

dr2=Gencode (e2)

code.addMacro(PUSH dr2)

code.add(JSR £) #return @ in R7
code.addcopy(r0,dr) # dr <- returned value
Gencoderestoreregisters() #restore curr values of reg.
return dr

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «25/29 —



Syntax-Directed Code Generation Code Generation for functions

A simple example 1/3

Generate code and draw the activation records during the call
execution of f:

int f(x) {return x+1;}

main:
z:=f(7);

:
Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «26/29 —



Syntax-Directed Code Generation Code Generation for functions

A simple example 2/3

main:

PUSH(RO,R1....R5)  #should be replaced by R6 manipulation.
AND tmpl tmpl O

ADD tmpl templ 7

PUSH (tmp1)

JSR £

AND tmp2 tmp2 O

AND tmp2 RO O

pop(R5... ,R1,R0) #but not the register associated to temp2
[use of temp2 here]

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «27/29 —



Syntax-Directed Code Generation Code Generation for functions

A simple example 3/3

f: PUSH(RT7)
COPY(R6,R7)
ADD R6 R6 xx #xx=number of spilled vars
LDR tmpl R7 #1 #first argument
ADD tmp2 tmpl 1

COPY (tmp2,R0) #store result in RO
COPY(R7,R6) #this is postlude
ADD R6 R6 -1 #1 argument

POP(R7)

Register allocation gives tmpl, tmp2 are allocated in R1 (or RO
if we are clever). Thus xx=0.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «28/29 —



Syntax-Directed Code Generation Code Generation for functions

To go further

@ How to implement the different calling conventions? (here,
call by value)?

@ How to implement imbricated functions (dynamic link,
static link).

@ How to store more complex types (arrays, structs, user
defined types)?

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 «29/29 —



	Front-end
	Syntax-Directed Code Generation
	Procedure call in LC-3
	Code Generation for functions


