
Compilation (#8) : Functions: syntax and
code generation

MIF08

Laure Gonnord
Laure.Gonnord@univ-lyon1.fr

nov 2016

Laure.Gonnord@univ-lyon1.fr

Big picture

So far:
All variables were global.
No function call.

Inspiration: N. Louvet, Lyon1 (archi part), C. Alias (code gen
part).

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 2 / 29 �

Front-end

Outline

1 Front-end

2 Syntax-Directed Code Generation

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 3 / 29 �

Front-end

Concrete syntax 1/2
we add variable declaration (with the var keyword):
vardecl

: VAR ID ASSIGN expr

;

blocks are like before:
block

: stat* #statList

;

stat_block

: OBRACE block CBRACE

| stat

;

procedures declaration:
declproc:

: PROC ID IS stat

;

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 4 / 29 �

Front-end

Concrete syntax 2/2

And now there will two new kinds of statements:
stat

: assignment

| if_stat

| while_stat

| log

| CALL ID

| BEGIN declvar* declproc* block_stat END

;

I We can declare local procedures inside local procedures.

On board : add new concrete syntax for functions.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 5 / 29 �

Front-end

Abstract syntax

WLOG, we will only consider programs with procedures:

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 6 / 29 �

Front-end

Exercise

EX : syntax for functions

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 7 / 29 �

Syntax-Directed Code Generation

Outline

1 Front-end

2 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 8 / 29 �

Syntax-Directed Code Generation

A bit about Typing

Two important remarks:
Now that variables are local, the typing environnement
should also be updated each time we enter a procedure.
Type checking for functions: construct the type from
definitions, check when a call is performed (see the course
on typing ML).

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 9 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Outline

1 Front-end

2 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 10 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines

A procedure/routine in assembly is just a piece of code

its first instruction’s address is known and tagged with a
label.

the JSR instruction jumps to this piece of code (routine
call).

at the end of the routine, a RET instruction is executed for
the PC to get the address of the instruction after the
routine call.

Slides coming from the architecture course, N. Louvet

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 11 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how? JSR

When a routine is called, we have to store the address where to
come back:

syntax : JSR label

action : R7 <- PC ; PC <- PC + SEXT(PCoffset11)
-1024≤Sext(Offset11)≤1023.
if adI is the JSR instruction’s address, the branching
address is:

adM = adI+1+Sext(PCOffset11), with
adI − 1023 ≤ adM ≤ adI + 1024.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 12 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how RET

Inside the routine code, the RET instruction enables to come
back:

syntax : RET

action : PC <- R7

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 13 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Writing routines

Call to the sub routine:

...

JSR sub ; R7 <- next line address

...

The last instruction of the routine is RET :

; sub routine

sub: ...

...

RET ; back to main

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 14 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

An example - strlen, without routine

.ORIG x3000

LEA R0,string ;

AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ST R1,res

HALT

; Constant chain

string: .STRINGZ "Hello World"

res: .BLKW #1

.END

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 15 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

String length routine 1/2

strlen call (the result will be stored in R0).

.ORIG x3000

; Main program

LEA R0,string ; R0 <- @(string)

JSR strlen ; routine call

ST R0,lg1

HALT

; Data

string: .STRINGZ "Hello World"

lg1: .BLKW #1

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 16 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

String length routine 2/2

strlen: AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ADD R0,R1,0 ; R0 <- R1

RET ; back to main (JMP R7)

.END ; END of complete prog

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 17 / 29 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3: chaining routines

If a routine needs to call another one:
Some temporary registers may have to be stored
somewhere
Its return address (in R7!) needs also to be stored.

I Store in the stack (R6) before, restore after.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 18 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Outline

1 Front-end

2 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 19 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Rules of the game

We still have our LC3 machine with registers:
general purpose registers R0 to R5.
a stack pointer (SP), here R6.
a frame pointer (FP), here R7

Simplification: no imbricated function declaration.
I when call p, there is a unique p code labeled by p :

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 20 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 1/2

(picture needed)
Any execution instance of a function is called an
activation.
We can represent all the activations of a given program
with an activation tree.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 21 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 2/2

During execution, we need to keep track of alive activations:
Control stack
An activation is pushed when activated
When its over, it is poped out.

I Notion of activation record that stores the information of
one function call at execution.

I The compiler is in charge of their management.
Slides inspired by C. Alias

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 22 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Activation record of a given function

...

caller of f

arguments

return address

old ARP/FP

spilled vars

function
f

...

The frame pointer (ARP or FP) points to the current activation
record (first spilled variable).

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 23 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Code generation 1/2

For functions, we have to reserve (local) place before knowing
the number of spilled variables!

int f(x1,x2) S;
return e

code.addMacro(PUSH R7) #store @ret

code.addcopy(R6,R7) #R7<-R6

code.addCode(ADD R6 R6 xx) #xx= future nb of spilled vars

code.addCode(LDR tmp1 R7 -1) #arg1

code.addCode(LDR tmp2 R7 -2) #arg2 (in rev order)

CodeGenSmt(S) #under the context x1->tmp1...

dr<-CodeGen(e) #same!

code.addcopy(dr,R0) #convention return val in R0

code.addMacro(RET,2+xx) #desalloc args + spilled vars + return

I CodeGenSmt must be called with a modified map.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 24 / 29 �

Syntax-Directed Code Generation Code Generation for functions

Code generation 2/2

call f(e1,e2)

Gencodesaveregisters() #save current values of reg.

dr <- newtmp

dr1=Gencode(e1)

code.addMacro(PUSH dr1)

dr2=Gencode(e2)

code.addMacro(PUSH dr2)

code.add(JSR f) #return @ in R7

code.addcopy(r0,dr) # dr <- returned value

Gencoderestoreregisters() #restore curr values of reg.

return dr

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 25 / 29 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 1/3

Generate code and draw the activation records during the call
execution of f:

int f(x) {return x+1;}

main:

z:=f(7);

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 26 / 29 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 2/3

main:

PUSH(R0,R1....R5) #should be replaced by R6 manipulation.

AND tmp1 tmp1 0

ADD tmp1 temp1 7

PUSH(tmp1)

JSR f

AND tmp2 tmp2 0

AND tmp2 R0 0

pop(R5... ,R1,R0) #but not the register associated to temp2!

[use of temp2 here]

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 27 / 29 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 3/3

f: PUSH(R7)

COPY(R6,R7)

ADD R6 R6 xx #xx=number of spilled vars

LDR tmp1 R7 #1 #first argument

ADD tmp2 tmp1 1

COPY(tmp2,R0) #store result in R0

COPY(R7,R6) #this is postlude

ADD R6 R6 -1 #1 argument

POP(R7)

Register allocation gives tmp1, tmp2 are allocated in R1 (or R0
if we are clever). Thus xx=0.

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 28 / 29 �

Syntax-Directed Code Generation Code Generation for functions

To go further

How to implement the different calling conventions? (here,
call by value)?
How to implement imbricated functions (dynamic link,
static link).
How to store more complex types (arrays, structs, user
defined types)?

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 29 / 29 �

	Front-end
	Syntax-Directed Code Generation
	Procedure call in LC-3
	Code Generation for functions

