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The LC-3 architecture in a nutshell

Our target machine : LC-3

memory: 216 16-bits words.
instructions are also encoded in 16-bits words.

We have a simulator (Pennsim, see lab)

Registers PC, IR, PSR (Program Status Register) + 8 general
purpose registers R0,...,R7.
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The LC-3 architecture in a nutshell

LC-3 ISA

See companion document.
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The LC-3 architecture in a nutshell

Example : ADD instruction

ADD DR, SR1, SR2, does DR <- SR1 + SR2.
↪→ All operands are registers.
↪→ Example : ADD R1, R2, R3 executes R1 <- R2 + R3.

ADD DR, SR1, imm5, does DR <- SR + imm5.
↪→ The last operand is an immediate value encoded in the

instruction.
↪→ Example : ADD R1, R2, 5 executes R1 <- R2 + 5.
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The LC-3 architecture in a nutshell

LC-3 ADD : encoding

A bit specifies the addressing mode:

assembly action encoding
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADD DR,SR1,SR2 DR <- SR1 + SR2 0 0 0 1 DR SR1 0 0 0 SR2
ADD DR,SR1,Imm5 DR <- SR1 + Imm5 0 0 0 1 DR SR1 1 Imm5

Laure Gonnord (Lyon1/FST) Compilation : reminder on LC-3 architecture � 7 / 12 �

The LC-3 architecture in a nutshell

LC-3 Memory access instructions

LD DR, add, does DR <- mem[add].
ST SR, add, does mem[add] <- SR.

I Direct addressing: add is an address, mem[add] the
associated memory cell.
This adress is encoded in the instruction:

assembly action encoding
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
LD DR,add DR <- mem[add] 0 0 1 0 DR add
ST SR,add mem[add] <- SR 0 0 1 1 SR add
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The LC-3 architecture in a nutshell

LC-3: branching

Unconditional branching:
BR add, does PC <- add.

add denotes the memory address of the instruction that will be
executed after the current instruction (direct addressing mode)

assembly action encoding
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
BR add PC <- add 0 0 0 0 0 0 0 add
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One example
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One example

Ex : Assembly code - demo

.ORIG x3000 ; address in memory

;program instructions

LD R1,a ;

;

LD R2,b ;

;

ADD R0,R1,R2 ;

;

ST R0,r ;

;

HALT ; flow back to OS

; data

a: .FILL #5 ; 5 is stored at this address

b: .FILL #2 ;

r: .BLKW #1 ; reservation of a memory cell

.END
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One example

LC-3 Exercises

see TD sheet.
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What’s compilation?

source language targuet languagecompiler

errors
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Compilation toward the machine language
We immediatly think of the translation of a high-level language
(C,Java,OCaml) into the machine language of a processor
(Pentium, PowerPC. . . )

% gcc -o sum sum.c

i n t main ( i n t argc , char ∗∗argv ) {
i n t i , s = 0 ;
for ( i = 0 ; i <= 100; i ++) s += i ∗ i ;
p r i n t f ( " 0∗0+.. .+100∗100 = %d \ n " , s ) ;

}

−→
0010011110111101111111111110000010101111101111110000000000010100

1010111110100100000000000010000010101111101001010000000000100100

1010111110100000000000000001100010101111101000000000000000011100

10001111101011100000000000011100

But this is only one aspect, we will see more!
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Course Objective

Be familiar with the mecanisms inside a (simple) compiler.
Beyond the scope: compilers optimisations of the 21th century.
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Course Content

Syntax Analysis : lexing, parsing, AST
Evaluators
Code generation
(Code Optimisation)

Support language: Python 2.7
Frontend infrastructure : ANTLR 4.
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Course Organization

4 TD groups: S. Brandel, L. Gonnord, N. Louvet, X.Urbain
(@univ-lyon1.fr)
6 (or 7) TP groups: S. Brandel, T. Excoffier, E. Guillou, S.
Guelton+Kevin Marquet, G. Bouchard, N. Louvet, X.Urbain.

The official URL :
http://laure.gonnord.org/pro/teaching/compilM1.html
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Evaluation

One “quick” during an exercise session (surprise!).
Some of the lab exercises, 2 mini-projects.
A final exam.
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Goal of this chapter

Understand the syntaxic structure of a language;
Separate the different steps of syntax analysis;
Be able to write a syntax analysis tool for a simple
language;
Remember: syntax6=semantics.
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Syntax analysis steps
How do you read text ?

Text=a sequence of symbols (letters, spaces, punctuation);
Group symbols into tokens:

Words: groups of letters;
Punctuation;
Spaces.

Group tokens into:
Propositions;
Sentences.

Then proceed with word meanings:
Definition of each word.
ex: a dog is a hairy mammal, that barks and...
Role in the phrase: verb, subject, ...

Syntax analysis=Lexical analysis+Parsing
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Lexical Analysis aka Lexing
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Lexical Analysis aka Lexing

What for ?

int y = 12 + 4*x ;

=⇒ [TINT, VAR("y"), EQ, INT(12), PLUS, INT(4), FOIS,
VAR("x"), PVIRG]

I Group characters into a list of tokens, e.g.:
The word “int” stands for type integer;
A sequence of letters stands for a variable;
A sequence of digits stands for an integer;
...
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Lexical Analysis aka Lexing

What’s behind

From a Regular Language, produce a Finite State Machine
(see LIF15)
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Lexical Analysis aka Lexing

Tools: lexical analyzer constructors

Lexical analyzer constructor: builds an automaton from a
regular language definition;
Ex: Lex (C), JFlex (Java), OCamllex, ANTLR (multi), ...
input: a set of regular expressions with actions (Toto.g4);
output: a file(s) (Toto.java) that contains the
corresponding automaton.
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Lexical Analysis aka Lexing

Analyzing text with the compiled lexer

The input of the lexer is a text file;
Execution:

Checks that the input is accepted by the compiled
automaton;
Executes some actions during the “automaton traversal”.
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Lexical Analysis aka Lexing

Lexing tool for Java: ANTLR

The official webpage : www.antlr.org (BSD license);
ANTLR is both a lexer and a parser;
ANTLR is multi-language (not only Java).

I During the labs; we will use the Python back-end (here,
demo in java)
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Lexical Analysis aka Lexing

ANTLR lexer format and compilation
.g4

grammar XX;

@header {

// Some init code ...

}

@members {

// Some global variables

}

// More optional blocks are available

--->> lex rules

Compilation:

antlr4 Toto.g4 // produces several Java files

javac *.java // compiles into xx.class files

grun Toto r // Run analyzer with starting rule r
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Lexical Analysis aka Lexing

Lexing with ANTLR: example

Lexing rules:
Must start with an upper-case letter;
Follow the usual extended regular-expressions syntax
(same as egrep, sed, ...).

A simple example

grammar H e l l o ;

/ / This r u l e i s a c t u a l l y a pars ing r u l e
r : HELLO ID ; / / match " h e l l o " fo l lowed by an i d e n t i f i e r

HELLO : 'hello' ; / / beware the s i n g l e quotes
ID : [ a−z ]+ ; / / match lower−case i d e n t i f i e r s
WS : [ \ t \ r \ n ]+ −> sk ip ; / / sk ip spaces, t abs , newl ines
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Lexical Analysis aka Lexing

Lexing - more than regular languages

Counting in ANTLR - CountLines.g4

l e xe r grammar CountLines;

/ / Members can be accessed i n any r u l e
@members { i n t nbLines=0 ; }

NEWLINE : [ \ r \ n ] {
nbLines++ ;
System . out . p r i n t l n ( " Current l i n e s : "+nbLines ) ;

} ;

SK : ( [ a−z ]+ | [ \ t ] + ) −> sk ip ;

antlr4 Toto.g4 // produces several Java files

javac *.java // compiles into xx.class files

grun Toto 'tokens' // Run the lexical analyser only
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Parsing
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Parsing

What’s Parsing ?
Relate tokens by structuring them.

Flat tokens
[TINT, VAR("y"), EQ, INT(12), PLUS, INT(4), FOIS, VAR("x"),
PVIRG]

⇒ Parsing⇒
Yes/No +

Structured tokens
=

yint +

12

4 x

*

int
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Parsing

Analysis Phases

source code
↓

lexical analysis
↓

sequence of “lexems” (tokens)
↓

syntactic analysis (Parsing)
↓

abstract syntax tree (AST )
↓

semantic analysis
↓

abstract syntax (+ symbol table)
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Parsing

What’s behind ?

From a Context-free Grammar, produce a Stack Automaton
(see LIF15).
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Parsing

Tools: parser generators

Parser generator: builds a stack automaton from a
grammar definition;
Ex: yacc(C), javacup (Java), OCamlyacc, ANTLR, ...
input : a set of grammar rules with actions (Toto.g4);
output : a file(s) (Toto.java) that contains the
corresponding stack automaton.
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Parsing

Lexing vs Parsing

Lexing supports (' regular) languages;
We want more (general) languages⇒ rely on context-free
grammars;
To that intent, we need a way:

To declare terminal symbols (tokens);
To write grammars.

I Use both Lexing rules and Parsing rules.
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Parsing

From a grammar to a parser

The grammar must be context-free:

S-> aSb

S-> eps

The grammar rules are specified as Parsing rules;
a and b are terminal tokens, produced by Lexing rules.

On board: notion of derivation tree (see also exercise session2)
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Parsing

Parsing with ANTLR: example 1/2

AnBnLexer.g4

lexer grammar AnBnLexer;

// Lexing rules: recognize tokens

A: 'a' ;

B: 'b' ;

WS : [ \t\ r\n ]+ -> skip ; // skip spaces, tabs, newlines
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Parsing

Parsing with ANTLR: example 2/2

AnBnParser.g4

parser grammar AnBnParser;

options {tokenVocab=AnBnLexer;} // extern tokens definition

// Parsing rules: structure tokens together

prog : s EOF ; // EOF: predefined end -of-file token

s : A s B

| ; // nothing for empty alternative
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Parsing

ANTLR expressivity

LL(*)

At parse-time, decisions gracefully throttle up from
conventional fixed k ≥ 1 lookahead to arbitrary
lookahead.

Further reading (PLDI’11 paper, T. Parr, K. Fisher)

http://www.antlr.org/papers/LL-star-PLDI11.pdf
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Parsing

Left recursion

ANTLR permits left recursion:

a: a b;

But not indirect left recursion. X1 → . . .→ Xn

There exist algorithms to eliminate indirect recursions.
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Parsing

Lists

ANTLR permits lists:

prog: statement+ ;

Read the documentation!

https:

//github.com/antlr/antlr4/blob/master/doc/index.md

Laure Gonnord (Lyon1/FST) Syntax Analysis � 24 / 29 �
Parsing Semantic actions / Attributes
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Parsing Semantic actions / Attributes

Semantic actions

Semantic actions: code executed each time a grammar rule is
matched.

Printing as a semantic action in ANTLR

s : A s B { System.out.println("rule s"); }

s : A s B { print("rule s"); }// python

Right rule : Python/Java/C++, depending on the back-end

antlr4 -Dlanguage=Python2

I We can do more than acceptors.
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Parsing Semantic actions / Attributes

Semantic actions - attributes

An attribute is a set attached to non-terminals/terminals of the
grammar

They are usually of two types:
synthetized: sons→ father.
inherited: the converse.
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Parsing Semantic actions / Attributes

Semantic attributes for numerical expressions 1/2

e ::= c constant
| x variable
| e+ e add
| e× e mult
| ...

Let’s come to an attribution. On board.
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Parsing Semantic actions / Attributes

Semantic attributes 2/2 : Implem

Implementation of the former actions (java):

ArithExprParser.g4

parser grammar Ar i t hExp rPa rse r ;
options {tokenVocab=ArithExprLexer;}

prog : expr EOF { System . out . p r i n t l n ( " Resu l t : "+$expr . va l ) ; } ;

expr re tu rns [ i n t va l ] : / / expr has an i n t e g e r a t t r i b u t e
LPAR e=expr RPAR { $val=$e . v a l ; }

| INT { $va l=$INT . i n t ; } / / i m p l i c i t a t t r i b u t e f o r INT
| e1=expr PLUS e2=expr / / name sub−par t s

{ $va l=$e1 . va l+$e2 . v a l ; } / / access a t t r i b u t e s
| e1=expr MINUS e2=expr { $va l=$e1 . val−$e2 . v a l ; }
;
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Evaluators, what for?

Analysis Phases

source code
↓

lexical analysis
↓

sequence of “lexems” (tokens)
↓

syntactic analysis (Parsing)
↓

abstract syntax tree (AST )
↓

semantic analysis
↓

abstract syntax (+ symbol table)
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Evaluators, what for?

Until now

We have parsed, and evaluate in semantic actions. But we
want:

more structure.
an easier way to perform actions (not in the .g4 file).
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Evaluators, what for?

Notion of Abstract Syntax Tree

=

yint +

12

4 x

*

int

AST: memory representation of a program;
Node: a language construct;
Sub-nodes: parameters of the construct;
Leaves: usually constants or variables.
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Evaluators, what for?

Separation of concerns

The semantics of the program could be defined in the
semantic actions (of the grammar). Usually though:

Syntax analyzer only produces the AST;
The rest of the compiler directly works with this AST.

Why ?
Manipulating a tree (AST) is easy (recursive style);
Separate language syntax from language semantics;
During later compiler phases, we can assume that the AST
is syntactically correct⇒ simplifies the rest of the
compilation.
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Evaluators, what for?

Running example : Numerical expressions

This is an abstract syntax (no more parenthesis, . . . ):

e ::= c constant
| x variable
| e+ e add
| e× e mult
| ...

Let us construct an AST to:
I Evaluate this expression (by tree traversal)
I Later: generate code for these expressions (by tree

traversal)
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Implementation

Outline
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Implementation Old-school way
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Implementation Old-school way

Explicit construction of the AST

Declare a type for the abstract syntax.
Construct instances of these types during parsing (trees).
Evaluate with tree traversal.
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Implementation Old-school way

Example in Java 1/3

AST definition in Java: one class per language construct.
public class APlus extends AExpr {

AExpr e1 , e2 ;

public APlus ( AExpr e1 , AExpr e2 ) { th is . e1=e1 ; th is . e2=e2 ; }

}
public class AMinus extends AExpr { . . .
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Implementation Old-school way

Example in Java 2/3

The parser builds an AST instance using AST classes defined
previously.

ArithExprASTParser.g4

parser grammar ArithExprASTParser ;

options {tokenVocab=ArithExprASTLexer;}

prog returns [ AExpr e ] : expr EOF { $e=$expr.e; } ;

// We create an AExpr instead of computing a value

expr returns [ AExpr e ] :

LPAR x=expr RPAR { $e=$x.e; }

| INT { $e=new AInt($INT.int); }

| e1=expr PLUS e2=expr { $e=new APlus($e1.e,$e2.e); }

| e1=expr MINUS e2=expr { $e=new AMinus($e1.e,$e2.e); }

;
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Implementation Old-school way

Example in Java 3/3

Evaluation is an eval function per class:

AExpr.java

p u b l i c abs t r ac t c lass AExpr {
abs t r ac t i n t eval ( ) ; / / need to prov ide semantics

}

APlus.java

public class APlus extends AExpr {
AExpr e1 , e2 ;
public APlus ( AExpr e1 , AExpr e2 ) { th is . e1=e1 ; th is . e2=e2 ; }
/ / semantics below
i n t eval ( ) { return ( e1 . eva l ( )+ e2 . eva l ( ) ) ; }

}
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Implementation Evaluators with visitors
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Implementation Evaluators with visitors

Principle - OO programming

The visitor design pattern is a way of separating an
algorithm from an object structure on which it
operates.[...] In essence, the visitor allows one to add
new virtual functions to a family of classes without
modifying the classes themselves; instead, one
creates a visitor class that implements all of the
appropriate specializations of the virtual function.

https://en.wikipedia.org/wiki/Visitor_pattern
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Implementation Evaluators with visitors

Application

Designing evaluators / tree traversal in ANTLR-Python
The ANTLR compiler generates a Visitor class.
We override this class to traverse the parsed instance.
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Implementation Evaluators with visitors

Example with ANTLR/Python 1/3

AritParser.g4

expr:

expr mdop expr #multiplicationExpr

| expr pmop expr #additiveExpr

| atom #atomExpr

;

atom

: INT #int

| ID #id

| '(' expr ')' #parens

I compilation with -Dlanguage=Python2 -visitor
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Implementation Evaluators with visitors

Example with ANTLR/Python 2/3 -generated file

c lass A r i t V i s i t o r ( ParseTreeV is i to r ) :
. . .

# V i s i t a parse t ree produced by A r i t P a r s e r # m u l t i p l i c a t i o n E x p r .
def v i s i t M u l t i p l i c a t i o n E x p r ( s e l f , c t x ) :

r e t u r n s e l f . v i s i t C h i l d r e n ( c t x )

# V i s i t a parse t ree produced by A r i t P a r s e r #atomExpr .
def v is i tA tomExpr ( s e l f , c t x ) :

r e t u r n s e l f . v i s i t C h i l d r e n ( c t x )

. .
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Implementation Evaluators with visitors

Example with ANTLR/Python 3/3

Visitor class overriding to write the evaluator:

MyAritVisitor.py

c lass M y A r i t V i s i t o r ( A r i t V i s i t o r ) :
# V i s i t a parse t ree produced by A r i t P a r s e r # i n t .

def v i s i t I n t ( s e l f , c t x ) :
value = i n t ( c t x . getText ( ) ) ;
r e t u r n value ;

def v i s i t M u l t i p l i c a t i o n E x p r ( s e l f , c t x ) :
l e f t v a l = s e l f . v i s i t ( c t x . expr ( 0 ) )
r i g h t v a l = s e l f . v i s i t ( c t x . expr ( 1 ) )
myop = s e l f . v i s i t ( c t x . mdop ( ) )
i f ( myop == ’ ∗ ’ ) :

r e t u r n l e f t v a l ∗ r i g h t v a l
e lse :

r e t u r n l e f t v a l / r i g h t v a l
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Implementation Evaluators with visitors

Nice Picture (Lab#3)

Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from
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Implementation Evaluators with visitors

From grammars to evaluators - summary

The meaning of each operation/grammar rule is now given
by the implementation of the associated function in the
visitor.
The visitor performs a tree traversal on the structure of the
parse tree.
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Typing

/
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Typing

If you write: "5" + 37

what do you want to obtain
a compilation error? (OCaml)
an exec error? (Python)
the int 42? (Visual Basic, PHP)
the string "537"? (Java)
anything else?

and what about 37 / "5" ?
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Typing

When is

e1 + e2

legal, and what are the semantic actions to perform ?

I Typing: an analysis that gives a type to each subexpression,
and reject incoherent programs.
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When

Dynamic typing (during exec): Lisp, PHP, Python
Static typing (at compile time): C, Java, OCaml

I Here: the second one.
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Slogan

well typed programs do not go wrong
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Typing objectives

Should be decidable.
It should reject programs like (1 2) in OCaml, or 1+"toto"
in C before an actual arror in the eveluation of the
expression: this is safety.
The type system should be expressive enough and not
reject too many programs. (expressivity)
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Several solutions

All sub-expressions are anotated by a type

fun (x : int)→ let (y : int) = (+ :)(((x : int), (1 : int)) : int× int) in

easy to verify, but tedious for the programmer
Annotate only variable declarations (Pascal, C, Java, . . . )

fun (x : int)→ let (y : int) = +(x, 1) in y

Only annotate function parameters

fun (x : int)→ let y = +(x, 1) in y

Do nothing : complete inference : Ocaml, Haskell, . . .
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Properties

correction: “yes” implies the program is well typed.
completeness: the converse.

(optional)
principality : The most general type is computed.
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Simple Type Checking for mini-while, theory

Outline

1 Simple Type Checking for mini-while, theory

2 A bit of implementation (for expr)
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Simple Type Checking for mini-while, theory

Mini-While Syntax
Expressions:

e ::= c constant
| x variable
| e+ e addition
| e× e multiplication
| ...

Mini-while:

S(Smt) ::= x := expr assign
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop
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Simple Type Checking for mini-while, theory

Typing judgement

We will define how to compute typing judgements denoted by:

Γ ` e : τ

and means “in environment Γ, expression e has type τ ”

I Γ associates a type Γ(x) to all free variables x in e.
Here types are basic types: Int|String|Bool
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Simple Type Checking for mini-while, theory

Typing rules for expr

Γ ` x : Γ(x) Γ ` n : int
(or bool, . . . )

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
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Simple Type Checking for mini-while, theory

Hybrid expressions

What if we have 1.2 + 42 ?
reject?
compute a float!

I This is type coercion.
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Simple Type Checking for mini-while, theory

More complex expressions

What if we have types pointer of bool or array of int? We
might want to check equivalence (for addition . . . ).

I This is called structural equivalence (see Dragon Book,
“type equivalence”). This is solved by a basic graph traversal.
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Simple Type Checking for mini-while, theory

Typing rules for statements

Idea: the type is void otherwise “typing error”

Γ ` e : t Γ(x) : t t ∈ {int, bool}
Γ ` x := e : void

Γ ` b : bool Γ ` S : void

Γ ` while b do S done : void

Laure Gonnord (Lyon1/FST) Typing (simple) programs 2016 � 17 / 24 �

A bit of implementation (for expr)

Outline

1 Simple Type Checking for mini-while, theory

2 A bit of implementation (for expr)
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A bit of implementation (for expr)

Principle of type checking

Gamma is constructed with lexing information or parsing
(variable declaration with types).
Rules are semantic actions. The semantic actions are
responsible for the evaluation order, as well as typing
errors.
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A bit of implementation (for expr)

Type Checking V1 : visitor

MyMuTypingVisitor.py

def v i s i t A d d i t i v e E x p r ( s e l f , c t x ) :
l v a l t y p e = s e l f . v i s i t ( c t x . expr ( 0 ) )
r v a l t y p e = s e l f . v i s i t ( c t x . expr ( 1 ) )

op = s e l f . v i s i t ( c t x . oplus ( ) )
i f l v a l t y p e == r v a l t y p e :

r e t u r n l v a l t y p e
e l i f { l v a l t y p e , r v a l t y p e } == { BaseType . In teger , BaseType

. F loa t } :
r e t u r n BaseType . F loa t

e l i f op == u ’+ ’ and any ( v t == BaseType . S t r i n g f o r v t i n
( r va l t ype , l v a l t y p e ) ) :
r e t u r n BaseType . S t r i n g

e lse :
r a i se SyntaxError ( " I n v a l i d type f o r a d d i t i v e operand

" )
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A bit of implementation (for expr)

Typing is more than type checking

Input: Trees are decorated by source code lines.
Output: Trees are decorated by types.

And we want informative errors:

Type error at line 42

is not sufficient!

Laure Gonnord (Lyon1/FST) Typing (simple) programs 2016 � 21 / 24 �

A bit of implementation (for expr)

Type Checking V2: from AST to decorated ASTs

Idea:
Generate an AST for the parsed file.
Decorate with types with a tree traversal.
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A bit of implementation (for expr)

AST type in Python

Ast.py

def _ _ i n i t _ _ ( s e l f ) :
super ( Expression , s e l f ) . _ _ i n i t _ _ ( )

" " " Expressions " " "
c lass BinOp ( Expression ) :

def _ _ i n i t _ _ ( s e l f , l e f t , r i g h t ) :
super ( Expression , s e l f ) . _ _ i n i t _ _ ( )
s e l f . l e f t = l e f t
s e l f . r i g h t = r i g h t

c lass AddOp( BinOp ) :
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A bit of implementation (for expr)

AST generation in Python

This AST is generated with the ANTLR visitor from our
grammar:

MyAritVisitor.py

def v i s i t A d d i t i v e E x p r ( s e l f , c t x ) :
l e f t v a l = s e l f . v i s i t ( c t x . expr ( 0 ) )
r i g h t v a l = s e l f . v i s i t ( c t x . expr ( 1 ) )
i f ( s e l f . v i s i t ( c t x . pmop ( ) ) == ’+ ’ ) : #see lab f o r a

b e t t e r way to match ops
r e t u r n AddOp( l e f t = l e f t v a l , r i g h t = r i g h t v a l )

e lse :
r e t u r n SubOp( l e f t = l e f t v a l , r i g h t = r i g h t v a l )
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Big picture

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language
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Rules of the Game here

For this code generation:
Still no functions and no non-basic types. (mini-while)
Syntax-directed: one grammar rule→ a set of instructions.
I Code redundancy.
No register reuse: everything will be stored on the stack.
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The Target Machine : LC3 (course #1)

[Introduction to Computing Systems: From Bits and Gates to C and Beyond,
McGraw-Hill, 2004].

See also:
http://highered.mcgraw-hill.com/sites/0072467509/
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A stack, why ?

Store constants, strings, . . .
Provide an easy way to communicate arguments values
(see later)
Give place to store intermediate values (here)
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LC3 stack emulation - from the archi course
R6 is initialised to a “end of stack” address (stackend)
R6 always stores the address of the last value stored in the
stack.
The stack grows in the dir. of decreasing addresses!

�������
�������
�������
�������

x0000

x3000

x30FF

x3100

xFFFF

stackend:

R0

R1

R7

R6 x3001x30FE

ins1

ins2
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LC3 stack emulation: concretely 1/2

.ORIG x3000

; Main program

main: LD R6,spinit ; stack pointer init

...

HALT

; Stack management

spinit: .FILL stackend

.BLKW #15 ; this stack is rather small

stackend: .BLKW #1 ; end of stack address

.END
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LC3 stack emulation: concretely 2/2

Push the content of Ri:

ADD R6,R6,-1 ; move head of stack

STR Ri,R6,0 ; store the value

Pop the content of the stack in Ri:

LDR Ri,R6,0 ; pop the value

ADD R6,R6,1 ; head of stack restauration
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Syntax-Directed Code Generation

Outline

1 Syntax-Directed Code Generation
3-address code generation

2 Toward a more efficient Code Generation
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Syntax-Directed Code Generation

A first example (1/4)

How do we translate:

x=4;

y=12+x;

Compute 4

Store somewhere place0, then link x 7→ place0

Compute 12 + x : 12 in place1, x in place2, then addition,
store in place3, then link x 7→ place3

I the code generator will use a place generator called
newtmp()
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Syntax-Directed Code Generation

A first example: 3@code (2/4)

“Compute 4 and store in x”:

AND temp1 temp1 0

ADD temp1 temp1 4

And x 7→ temp1.
I This is called three-adress code generation
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Syntax-Directed Code Generation

A first example: from 3@ code to valid LC-3 (3/4)

But this is not valid LC3 code !
We should use registers, but as they are only 8, we use the
stack to store temporaries. Here store R1 on the stack!

AND R1 R1 0

ADD R1 R1 4

ADD R6 R6 -1 #here also store x -> R6 somewhere

STR R1 R6 0 #now R1 can be recycled
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Syntax-Directed Code Generation

A first example: prelude/postlude 4/4

The rest of the code generation:

.ORIG X3000

LEA R6 data

[...]

stop: BR stop

data: .BLKW 42

.END

I This is valid LC-3 code that can be assembled and executed
in Pennsim.
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Syntax-Directed Code Generation

Objective of the rest of the course

3-address LC-3 Code Generation for the Mini-While
language:

All variables are int/bool.
All variables are global.
No functions

with syntax-directed translation. Implementation in Lab.
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Syntax-Directed Code Generation

Code generation utility functions

We will use:
A new (fresh) temporary can be created with a newtemp()

function.
A new fresh label can be created with a newlabel()

function.

Laure Gonnord (Lyon1/FST) Code Generation 2016 � 15 / 22 �

Syntax-Directed Code Generation 3-address code generation

Outline

1 Syntax-Directed Code Generation
3-address code generation

2 Toward a more efficient Code Generation
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Syntax-Directed Code Generation 3-address code generation

Abstract Syntax
Expressions:

e ::= c constant
| x variable
| e+ e addition
| e or e boolean or
| e < e less than
| ...

and statements:

S(Smt) ::= x := expr assign
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop
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Syntax-Directed Code Generation 3-address code generation

Code generation for expressions, example

e ::= c (cte expr)

#not valid if c is too big

dr <-newTemp()

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, c))

return dr

I this rule gives a way to generate code for any constant.

Laure Gonnord (Lyon1/FST) Code Generation 2016 � 18 / 22 �
Syntax-Directed Code Generation 3-address code generation

Code generation for a boolean expression, example

e ::= e1 < e2

dr <-newTemp()

t1 <- GenCodeExpr (e1-e2) #last write in register

(lfalse,lend) <- newLabels()

code.add(InstructionBRzp(lfalse)) #if =0 or >0 jump!

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, 1)) #dr <- true

code.add(InstructionBR(lend))

code.addLabel(lfalse)

code.add(InstructionAND(dr, dr, O)) #dr <- false

code.addLabel(lend)

return dr

I integer value 0 or 1.
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Syntax-Directed Code Generation 3-address code generation

Code generation for commands, example

if b then S1 else S2

dr <-GenCodeExpr(b) #dr is the last written register

lfalse,lendif=newLabels()

code.add(InstructionBRz(lfalse) #if 0 jump to execute S2

GenCodeSmt(S1) #else (execute S1

code.add(InstructionBR(lendif)) #and jump to end)

code.addLabel(lfalse)

GenCodeSmt(S2)

code.addLabel(lendif)
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Toward a more efficient Code Generation

Outline

1 Syntax-Directed Code Generation

2 Toward a more efficient Code Generation
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Toward a more efficient Code Generation

Drawbacks of the former translation

Drawbacks:
redundancies (constants recomputations, . . . )
memory intensive loads and stores.

I we need a more efficient data structure to reason on: the
control flow graph (CFG). (see next course)
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Big picture

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language
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In context 1/2

In the last course we saw the need for a better data structure to
propagate and infer information. We need:

A data structure that helps us to reason about the flow of
the program.
Which embeds our three address code.

I Control-Flow Graph.
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In context 2/2

decorated AST
↓

IR Construction
↓

Control-Flow Graph
↓

Clever analyses/code generation
↓

assembly language
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Control flow Graph

Outline

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling

3 SSA Control Flow Graph
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Control flow Graph

Definitions

Basic Block
Basic block: largest (3-address LC-3) instruction sequence
without label. (except at the first instruction) and without jumps
and calls.

CFG
It is a directed graph whose vertices are basic blocks, and edge
B1 → B2 exists if B2 can follow immediately B1 in an execution.

I two optimisation levels: local (BB) and global (CFG)
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Control flow Graph

Identifying Basic Blocks (from 3@code)

The first instruction of a basic block is called a leader.
We can identify leaders via these three properties:

1 The first instruction in the intermediate code is a leader.
2 Any instruction that is the target of a conditional or

unconditional jump is a leader.
3 Any instruction that immediately follows a conditional or

unconditional jump is a leader.

Once we have found the leaders, it is straighforward to
find the basic blocks: for each leader, its basic block
consists of the leader itself, plus all the instructions until
the next leader.
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Control flow Graph

Exercise

Generate the “high level” CFG for the given program:

p:=0;i:=1;

while (i <= 20) do

if p>60 then

p:=0;i:=5;

endif

i:=2*i+1;

done

k:=p*3;

(inside your compiler, blocks will be a list of 3@-LC-3 code)
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Control flow Graph

CFG for tests

if (expr1 and expr2)

...branch1...

else

...branch2...

expr1?

expr2?

branch2branch1

end of if

(blocks are subgraphs)
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Basic Bloc DAGs, instruction selection/scheduling

Outline

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
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Basic Bloc DAGs, instruction selection/scheduling

Big picture

Front-end→ a CFG where nodes are basic blocks.
Basic blocks→ DAGs that explicit common computations

u1 := c - d

u2 := b + u1

u3 := a * u2

u4 := u2 * u1

u5 := u3 + u4

+

* *

a +

b -

c d

MULADD

MUL

ADD

SUB

I choose instructions(selection) and order them (scheduling).
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Outline

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection

The problem of selecting instructions is a DAG-partitioning
problem. But what is the objective ?

The best instructions:
cover bigger parts of computation.
cause few memory accesses.

I Assign a cost to each instruction, depending on their
addressing mode.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection: an example

+

ADD(c=2)

+

cte

ADD(c=1)

*

MUL(c=2)

*

cte

MUL(c=1)

+

*

MULADD(c=3)

What is the optimal
instruction selection for:

+

+ 42

* b

1515 a

I Finding a tiling of minimal cost: it is NP-complete (SAT
reduction).
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Tiling trees / DAGs, in practise

For tiling:
There is an optimal algorithm for trees based on dynamic
programing.
For DAGs we use heuristics (decomposition into a forest of
trees, . . . )

I The litterature is pletoric on the subject.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Outline

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph

Laure Gonnord (Lyon1/FST) Compilation (#6): IRs 2016 � 16 / 28 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Instruction Scheduling, what for?

We want an evaluation order for the instructions that we choose
with Instruction Scheduling.

A scheduling is a function θ that associates a logical date to
each instruction. To be correct, it must respect data
dependancies:

(S1) u1 := c - d

(S2) u2 := b + u1

implies θ(S1) < θ(S2).
I How to choose among many correct schedulings? depends
on the target architecture.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Architecture-dependant choices

The idea is to exploit the different ressources of the machine at
their best:

instruction parallelism: some machine have parallel units
(subinstructions of a given instruction).
prefetch: some machines have non-blocking load/stores,
we can run some instructions between a load and its use
(hide latency!)
pipeline.
registers: see next slide.

(sometimes these criteria are incompatible)
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Register use

Some schedules induce less register pressure:

I How to find a schedule with less register pressure?
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Scheduling wrt register pressure

Result: this is a linear problem on trees, but NP-complete on
DAGs (Sethi, 1975).

I Sethi-Ullman algorithm on trees, heuristics on DAGs
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees

ρ(node) denoting the number of (pseudo)-registers necessary
to compute a node:

ρ(leaf) = 1

ρ(nodeop(e1, e2)) =

{
max{ρ(e1), ρe2} if ρ(e1) 6= ρ(e2)

ρ(e1) + 1 else

(the idea for non “balanced” subtrees is to execute the one with
the biggest ρ first, then the other branch, then the op. If the tree
is balanced, then we need an extra register)
I then the code is produced with postfix tree traversal, the
biggest register consumers first.
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Sethi-Ullman algorithm on trees - an example
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tmp1 tmp2 tmp3 tmp4
mul tmp1, b b

mul tmp2, a c

ldi tmp3, 4

mul tmp4, tmp2, tmp3

mul tmp5, tmp1 ,temp4
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Another example

Consider the expression ((a+ b) ∗ (a− b) ∗ (a− b)) + 1 where a
and b are stored in stack slots. The multiplication will be
implemented with the new instruction mul t1 t2 t3.

What is the minimum amount of registers required to evaluate E
? Generate code and draw the liveness intervals for your code.
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Conclusion (instruction selection/scheduling)

Plenty of other algorithms in the literature:
Scheduling DAGs with heuristics, . . .
Scheduling loops (M2 course on advanced compilation)

Practical session:
we have (nearly) no choice for the instructions in the LC3
ISA.
evaluating the impact of scheduling is a bit hard.

We won’t implement any of the previous algorithms.
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SSA Control Flow Graph
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3 SSA Control Flow Graph
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SSA Control Flow Graph

What’s SSA? (Cytron 1991)

Each variable is assigned only once (Static Single Assigment
form):

x ← 5

x ← x - 3

x < 3 ?

y ← x - 3
y ← 2 * x

w ← y

w ← x - y

z ← x + y

x_1 ← 5

x_2 ← x_1 - 3

x_2 < 3 ?

y_2 ← x_2 - 3
y_1 ← 2 * x_2

w_1 ← y_1

y_3 ← phi(y_1 ,y_2)

w_2 ← x_2 - y_3

z_1 ← x_2 + y_3
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SSA-Graph Construction

See http://homepages.dcc.ufmg.br/~fernando/classes/

dcc888/ementa/slides/StaticSingleAssignment.pdf
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SSA Control Flow Graph

Pro/cons

- Another IR, and cost of contruction/deconstruction
+ (some) Analyses/optimisations are easier to perform (like

register allocation):
http://homepages.dcc.ufmg.br/~fernando/classes/

dcc888/ementa/slides/SSABasedRA.pdf
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Compilation and Program Analysis(#7):
Register Allocation + Data Flow Analyses

MIF08

Laure Gonnord
Laure.Gonnord@univ-lyon1.fr

oct 2016

Where are we ?

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language

I We work on IRs (Middle-end).
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2 A tour on data-flow Analyses

3 Back on register allocation
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Register allocation - Intro

Credits

Fernando Pereira’s course on register allocation:

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/

ementa/slides/RegisterAllocation.pdf

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 � 4 / 36 �



Register allocation - Intro

What for ?

Finding storage locations to the values manipulated by the
program I registers or memory.
registers are fast but in small quantity.
memory is plenty, but slower access time.

I A good register allocator should strive to keep in registers the
variables used more often.
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Register allocation - Intro

What for ?

Expected behavior of register allocation:
Input: a CFG with basic blocks with 3-address code (and
pseudo-registers, aka temporaries)
Output : same CFG but without pseudo-registers:

replace with physical registers as much as possible.
if not splill, ie allocate a place in memory.
all copies assigned to the same physical registers (“moves”)
can be removed: coalescing
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Register constraints
Some variable are assigned to some specific registers
(compiler, architecture constraints)

I r1,r2,r3 are used to pass function arguments here.
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Register allocation - Intro

The key notion: liveness

Observation
Two variables that are simultaneously alive must be assigned
different registers.

(formal definition of alive follows)
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Register allocation - Intro

Register assignment is NP-complete

Theorem
Given P and K general purpose registers, is there an
assignment of the variables P in registers, such that (i) every
variable gets at least one register along its entire live range, and
(ii) simultaneously live variables are given different registers ?

Gregory Chaitin has shown, in the early 80’s, that the register
assignment problem is NP-Complete (register allocation via
coloring, 1981)
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Register allocation - Intro

3-phase algorithm

Liveness analysis
When is a given value necessary for the rest of the
computation?

Interference graph
A graph that encodes which pseudo-registers cannot be
mapped to the same location.

Graph coloring then register allocation.
The effective allocation: physical registers and stack
allocation for pseudo-registers.

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 � 10 / 36 �
A tour on data-flow Analyses

Outline

1 Register allocation - Intro
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Other data-flow analyses

3 Back on register allocation
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A tour on data-flow Analyses A first example: Liveness Analysis

Outline

1 Register allocation - Intro

2 A tour on data-flow Analyses
A first example: Liveness Analysis
Other data-flow analyses

3 Back on register allocation

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 � 12 / 36 �



A tour on data-flow Analyses A first example: Liveness Analysis

Liveness analysis

In the sequel we call variable a pseudo-register or a physical
register.

Alive Variable
In a given program point, a variable is said to be alive if the
value she contains may be used in the rest of the execution.

May: non decidable property I overapproximation.

Important remark: here a block = a statement/program point.
We have the same kind of analyses with block=basic block.
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A tour on data-flow Analyses A first example: Liveness Analysis

An example for live ranges

Definition
A variable is live at the exit of a block if there exists a path from
the block to a use of the variable that does not redefine the
variable.

x:=2;

y:=4;

x:=1;

if (y>x)

then z:=y

else z=y*y ;

x:=z;

x:=2

B1

y:=4

B2

x:=1

B3

y>x ?

B4

z:=y*y

B6

x is not alive here !

z:=y

B5

x:=z

B7 z is alive here

no one is alive here (end)

I The information flow is backward: from uses to definitions.
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Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no kill variables.

Definition
A generated variable is a variable that appears in the block.

I Sets : killLV (block) and genLV (block)
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A tour on data-flow Analyses A first example: Liveness Analysis

Data flow expressions

exit

entry

Block `

LVexit(`) =

{
∅ if ` = final⋃{LVentry(`

′)|(`, `′) ∈ flow(G)}

LVentry(`) =
(
LVexit(`)\killLV (`)

)
∪ genLV (`)
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A tour on data-flow Analyses A first example: Liveness Analysis

Data flow equation: solving

Here:
Initialise LV sets to ∅.
Compute LVentry sets, then LVexit, and continue.
Stop when a fix point is reached.

I (vector of) Sets are strictly growing, and the live range set is
at most the set of all variables, thus this algorithm terminates.
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A tour on data-flow Analyses A first example: Liveness Analysis

Steps

LVentry(`) denoted by In(`), LVentry(`) by Out(`) initilisation to
emptysets is not depicted.

Step 1 Step 2 Step 3 (stable)
` kill(`) gen(`) In(`) Out(`) In(`) Out(`) In(`)
1 {x} ∅ ∅ ∅ ∅ ∅ ∅
2 {y} ∅ ∅ ∅ ∅ {y} ∅
3 {x} ∅ ∅ {x, y} {y} {x, y} {y}
4 ∅ {x, y} {x, y} {y} {x, y} {y} {x, y}
5 {z} {y} {y} {z} {y} {z} {y}
6 {z} {y} {y} {z} {y} {z} {y}
7 {x} {z} {z} ∅ {z} ∅ {z}
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Final result and use

Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).

` LVentry(`) LVexit(`)

1 ∅ ∅
2 ∅ {y}
3 {y} {x, y}
4 {x, y} {y}
5 {y} {z}
6 {y} {z}
7 {z} ∅

I Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)
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A tour on data-flow Analyses Other data-flow analyses
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A tour on data-flow Analyses Other data-flow analyses

Common subexpressions

Avoiding the computation of an (arithmetic) expression :

x:=a+b;

y:=a*b;

while(y>a+b) do

a:=a+a;

x:=a+b;

done

I Same kind of equations.
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Back on register allocation

Outline

1 Register allocation - Intro

2 A tour on data-flow Analyses

3 Back on register allocation
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Interference

The liveness analysis gives us for a+ (b+ c):
tmp1 tmp2 tmp3 tmp4 tmp5 tmp6

ld tmp1,la

ld tmp2,lb

ld tmp3,lc

ADD tmp4, tmp2, tmp3

ADD tmp5, tmp4,0

ADD tmp6, tmp1, tmp5

...

I tmp1 is in conflit with tmp2 (because of instruction 3) denoted
by tmp1 ./ tmp2.

Important remark: technically, ADD tmp5, tmp4,0 is a move
instruction
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Back on register allocation

Interference graph

A denotes tmp1, . . . ./ defines a graph:

We want a correct allocation with respect to ./:
tmp1 ./ tmp2 =⇒ Alloc(tmp1) 6= Alloc(tmp2).

I Graph coloring.
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Back on register allocation

Running example
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Back on register allocation

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges):

Proposition (Kempe 1879)
Suppose the graph contains a node m with fewer than K
neighbours. Then if G′ = G \ {m} can be colored, then G can
be colored as well.

I Pick a low degree node, and remove it, and continue until
remove all (the graph is K-colorable) or . . .
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Kempe’s simplification algorithm 2/2
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Back on register allocation

Let’s color!
We assign colors to the nodes greedily, in the reverse
order in which nodes are removed from the graph.
The color of the next node is the first color that is available,
i.e. not used by any neighbour.
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Back on register allocation

Greedy coloring example 1/2
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Back on register allocation

Greedy coloring example 2/2
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If the graph is not colorable

Non-colored variables are named spilled pseudo-registers.

Idea: Modify the code to lower the number of simultaneously
alive registers. Plenty of solutions, the simplier is to reserve a
dedicated place for a given spilled variable, and store and load
from memory:

ADD temp5, temp4, temp3

...

ADD temp6, temp5, #5

becomes:

ADDINMEMORY [placefortemp5], temp4, temp3

...

ADDxx temp6, [placefortemp5], #5

But we do not have this kind of instruction in our machine!

Laure Gonnord (Lyon1/FST) Compilation (#7): Register Alloc 2016 � 31 / 36 �

Back on register allocation

One solution for spilled variables

We invent 2 versions of the same variable (live-range
splitting), and modify the code into:

ADD temp51, temp4, temp3

ST temp51 [placeinmemory]

..

LD temp52 [placeinmemory]

ADD temp6, temp52, #5

I But now we have to allocate these two new variables!

We relaunch the coloring algorithm. This is called iterative
register coloring. (see Exercise Sheet 4)
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Back on register allocation

An example
Consider the following assembly code, where t1, . . . , t8 are
temporaries to be allocated:

ld t1,[a1]

ld t2,[a2]

sub t3,t1,t2

ld t4,[b1]

ld t5,[b2]

sub t6,t4,t5

MOV(t7,t6)

add t8,t3,t7

Draw the liveness intervals and the interference graph.
Apply the simplification coloring with K = 3 registers. Give
the final code.
Apply the iterative coloring with K = 2 registers. Give the
final code.
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Back on register allocation

Physical Memory Allocation

We will invent physical memory places from the stack pointer
(see next course).
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Other Algorithms
Linear scan: greedy coloring of interval graphs. (see
Fernando Pereira’s slides on register allocation: 18 to 35)
Iterative Register Coalescing (George/Appel, TOPLAS,
1996) (same, from slides 44), which uses “coalesce edges”
(variables are related by move instructions).
Plenty of other heuristics for splilling.
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Back on register allocation

A nice result

Chordal graphs are P-colorable
For certain classes of graphs, graph coloring is P. This is the
case for cordal graphs where every cycle with 4 or more
edges has a chord (connects 2 vertices in the cycle but not part
of the cycle).

Important result (Sebastian Hack): Programs in strict SSA form
have this property.
I Pereira Palsberg Register allocation (APLAS 2005).
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Compilation (#8) : Functions: syntax and
code generation
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Laure Gonnord
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nov 2016

Big picture

So far:
All variables were global.
No function call.

Inspiration: N. Louvet, Lyon1 (archi part), C. Alias (code gen
part).
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Front-end

Concrete syntax 1/2
we add variable declaration (with the var keyword):
vardecl

: VAR ID ASSIGN expr

;

blocks are like before:
block

: stat* #statList

;

stat_block

: OBRACE block CBRACE

| stat

;

procedures declaration:
declproc:

: PROC ID IS stat

;
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Front-end

Concrete syntax 2/2

And now there will two new kinds of statements:
stat

: assignment

| if_stat

| while_stat

| log

| CALL ID

| BEGIN declvar* declproc* block_stat END

;

I We can declare local procedures inside local procedures.

On board : add new concrete syntax for functions.
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Front-end

Abstract syntax

WLOG, we will only consider programs with procedures:
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Exercise

EX : syntax for functions
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Syntax-Directed Code Generation
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Syntax-Directed Code Generation

A bit about Typing

Two important remarks:
Now that variables are local, the typing environnement
should also be updated each time we enter a procedure.
Type checking for functions: construct the type from
definitions, check when a call is performed (see the course
on typing ML).
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Syntax-Directed Code Generation Procedure call in LC-3
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Routines

A procedure/routine in assembly is just a piece of code

its first instruction’s address is known and tagged with a
label.

the JSR instruction jumps to this piece of code (routine
call).

at the end of the routine, a RET instruction is executed for
the PC to get the address of the instruction after the
routine call.

Slides coming from the architecture course, N. Louvet
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Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how? JSR

When a routine is called, we have to store the address where to
come back:

syntax : JSR label

action : R7 <- PC ; PC <- PC + SEXT(PCoffset11)
-1024≤Sext(Offset11)≤1023.
if adI is the JSR instruction’s address, the branching
address is:

adM = adI+1+Sext(PCOffset11), with
adI− 1023 ≤ adM ≤ adI + 1024.
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Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how RET

Inside the routine code, the RET instruction enables to come
back:

syntax : RET

action : PC <- R7
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Syntax-Directed Code Generation Procedure call in LC-3

Writing routines

Call to the sub routine:

...

JSR sub ; R7 <- next line address

...

The last instruction of the routine is RET :

; sub routine

sub: ...

...

RET ; back to main
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An example - strlen, without routine

.ORIG x3000

LEA R0,string ;

AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ST R1,res

HALT

; Constant chain

string: .STRINGZ "Hello World"

res: .BLKW #1

.END
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Syntax-Directed Code Generation Procedure call in LC-3

String length routine 1/2

strlen call (the result will be stored in R0).

.ORIG x3000

; Main program

LEA R0,string ; R0 <- @(string)

JSR strlen ; routine call

ST R0,lg1

HALT

; Data

string: .STRINGZ "Hello World"

lg1: .BLKW #1
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Syntax-Directed Code Generation Procedure call in LC-3

String length routine 2/2

strlen: AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ADD R0,R1,0 ; R0 <- R1

RET ; back to main (JMP R7)

.END ; END of complete prog
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Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3: chaining routines

If a routine needs to call another one:
Some temporary registers may have to be stored
somewhere
Its return address (in R7!) needs also to be stored.

I Store in the stack (R6) before, restore after.
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Syntax-Directed Code Generation Code Generation for functions

Rules of the game

We still have our LC3 machine with registers:
general purpose registers R0 to R5.
a stack pointer (SP), here R6.
a frame pointer (FP), here R7

Simplification: no imbricated function declaration.
I when call p, there is a unique p code labeled by p :
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Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 1/2

(picture needed)
Any execution instance of a function is called an
activation.
We can represent all the activations of a given program
with an activation tree.
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Syntax-Directed Code Generation Code Generation for functions

Key notion: activation record - Vocabulary 2/2

During execution, we need to keep track of alive activations:
Control stack
An activation is pushed when activated
When its over, it is poped out.

I Notion of activation record that stores the information of
one function call at execution.

I The compiler is in charge of their management.
Slides inspired by C. Alias
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Activation record of a given function

...

caller of f

arguments

return address

old ARP/FP

spilled vars

function
f

...

The frame pointer (ARP or FP) points to the current activation
record (first spilled variable).
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Syntax-Directed Code Generation Code Generation for functions

Code generation 1/2

For functions, we have to reserve (local) place before knowing
the number of spilled variables!

int f(x1,x2) S;
return e

code.addMacro(PUSH R7) #store @ret

code.addcopy(R6,R7) #R7<-R6

code.addCode(ADD R6 R6 xx) #xx= future nb of spilled vars

code.addCode(LDR tmp1 R7 -1) #arg1

code.addCode(LDR tmp2 R7 -2) #arg2 (in rev order)

CodeGenSmt(S) #under the context x1->tmp1...

dr<-CodeGen(e) #same!

code.addcopy(dr,R0) #convention return val in R0

code.addMacro(RET,2+xx) #desalloc args + spilled vars + return

I CodeGenSmt must be called with a modified map.
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Code generation 2/2

call f(e1,e2)

Gencodesaveregisters() #save current values of reg.

dr <- newtmp

dr1=Gencode(e1)

code.addMacro(PUSH dr1)

dr2=Gencode(e2)

code.addMacro(PUSH dr2)

code.add(JSR f) #return @ in R7

code.addcopy(r0,dr) # dr <- returned value

Gencoderestoreregisters() #restore curr values of reg.

return dr
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A simple example 1/3

Generate code and draw the activation records during the call
execution of f:

int f(x) {return x+1;}

main:

z:=f(7);
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A simple example 2/3

main:

PUSH(R0,R1....R5) #should be replaced by R6 manipulation.

AND tmp1 tmp1 0

ADD tmp1 temp1 7

PUSH(tmp1)

JSR f

AND tmp2 tmp2 0

AND tmp2 R0 0

pop(R5... ,R1,R0) #but not the register associated to temp2!

[use of temp2 here]

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 27 / 29 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 3/3

f: PUSH(R7)

COPY(R6,R7)

ADD R6 R6 xx #xx=number of spilled vars

LDR tmp1 R7 #1 #first argument

ADD tmp2 tmp1 1

COPY(tmp2,R0) #store result in R0

COPY(R7,R6) #this is postlude

ADD R6 R6 -1 #1 argument

POP(R7)

Register allocation gives tmp1, tmp2 are allocated in R1 (or R0
if we are clever). Thus xx=0.
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To go further

How to implement the different calling conventions? (here,
call by value)?
How to implement imbricated functions (dynamic link,
static link).
How to store more complex types (arrays, structs, user
defined types)?

Laure Gonnord (Lyon1/FST) Compilation (#8): functions 2016 � 29 / 29 �


