
Exercise session 1
LC-3 Architecture, and Lexical Analysis

1.1 The LC-3 architecture

We give you the “LC-3 cheat sheet”. The objective is to refresh memories about the LC-3 assembly you al-
ready saw in LIF6. Your teaching assistant will make some demo (of Pennsim simulator) during this session.
Companion sheet: A.

EXERCISE #1 Ï TD
On paper, write (in LC-3 assembly language) a program which initializes the R0 register to 1 and increments it
until it becomes equal to 10.

EXERCISE #2 Ï Hand disassembling
In Figure 1.1 we depicted a toy example with its corresponding assembly code. Disasemble the two first in-
structions in the table.

Fill the first two row of the table, read the rest of the solution, and answer the following questions:
• Which instruction is used to load data from memory?
• Could we do it another way?
• How is the pointer jumping done to create the loop?
• What happens to the labels in the disassemble program?

Address Content Binary Instructions pseudo-code

x3000 x5020

x3001 x1221

x3002 xE404 1110 010 0 0000 0100 LEA R2, Offset9=4 R2 ← x3007 (label end)

x3003 x6681 010 011 010 00 0001 LDR R3, R2, 1
R3 ← mem[R2+1]

(label of data→ x3008)

loop:x3004 x1262 0001 001 001 1 00010 ADD R1, R1, 2 R1 ← R1 +2

x3005 x16FF 0001 011 011 1 11111 ADD R3, R3, -1 R3 ← R3 −1

x3006 x03FD 0000 001 1 1111 1101 BRp Offset9=-3 if R3 > 0 goto loop

end:x3007 xF025 1111 0000 0010 0101 TRAP x25 H ALT

data:x3008 x0006 data -

Figure 1.1: A binary/hexadecimal program (tp1-52.asm)

EXERCISE #3 Ï C to LC-3- Skip if you are late
Translate into LC-3 code the following C-code:

x=5;
if (x>12) y=70; else y=x+12

1.2 Lexical Analysis

A bit of ANTLR4 syntax is given as companion material.

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain 1/5

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Exercices (TD) #1 – 2016

EXERCISE #4 Ï Regular expressions for lexing
Use the ANTLR4 syntax to define ANTLR4 macros to define:

1. Identifiers : any sequence of letters, digits and _ that do not begin by a digit nor _.

2. Floats like −3.96 (the sign is optional, but the dot is not).

3. Scientific notation like −1.6E −12.

EXERCISE #5 Ï Romans numbers
Write an ANTLR4 lexical file that reads and interprets Roman numerals : IV → 4 . . . You can use the fact that
the lexical analysis always takes the rule to match the longest subchain.

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain 2/5

antlr4 / doc / lexer-rules.md

antlr / antlr4

 Code Issues 215 Pull requests 37 Projects 0 Wiki Pulse Graphs

 master Branch: Find �le Copy path

2 contributors

ba64a1e on 28 Mar

 beardlybread documentation typos

 284 lines (215 sloc) 10.5 KB

Lexer Rules

A lexer grammar is composed of lexer rules, optionally broken into multiple modes. Lexical modes allow us to split a single
lexer grammar into multiple sublexers. The lexer can only return tokens matched by rules from the current mode.

Lexer rules specify token definitions and more or less follow the syntax of parser rules except that lexer rules cannot have
arguments, return values, or local variables. Lexer rule names must begin with an uppercase letter, which distinguishes them
from parser rule names:

/** Optional document comment */
TokenName : alternative1 | ... | alternativeN ;

You can also define rules that are not tokens but rather aid in the recognition of tokens. These fragment rules do not result in
tokens visible to the parser:

fragment
HelperTokenRule : alternative1 | ... | alternativeN ;

For example, DIGIT is a pretty common fragment rule:

INT : DIGIT+ ; // references the DIGIT helper rule
fragment DIGIT : [09] ; // not a token by itself

Lexical Modes

Modes allow you to group lexical rules by context, such as inside and outside of XML tags. It’s like having multiple sublexers,
one for context. The lexer can only return tokens matched by entering a rule in the current mode. Lexers start out in the so-
called default mode. All rules are considered to be within the default mode unless you specify a mode command. Modes are
not allowed within combined grammars, just lexer grammars. (See grammar XMLLexer from Tokenizing XML.)

rules in default mode
...
mode MODE1;
rules in MODE1
...
mode MODEN;
rules in MODEN
...

Lexer Rule Elements

Raw Blame History

Pricing Blog Support This repositoryPersonal Open source Business Explore Search Sign upSign in

186 1,660 506 Watch Star Fork

Lexer rules allow two constructs that are unavailable to parser rules: the .. range operator and the character set notation
enclosed in square brackets, [characters]. Don’t confuse character sets with arguments to parser rules. [characters] only
means character set in a lexer. Here’s a summary of all lexer rule elements:

Syntax Description

T Match token T at the current input position. Tokens always begin with a capital letter.

’literal’ Match that character or sequence of characters. E.g., ’while’ or ’=’.

[char set]

Match one of the characters specified in the character set. Interpret x-y as set of characters between range
x and y, inclusively. The following escaped characters are interpreted as single special characters: \n, \r, \b,
\t, and \f. To get], \, or - you must escape them with \. You can also use Unicode character specifications:
\uXXXX. Here are a few examples:

WS : [\n\u000D] > skip ; // same as [\n\r]

ID : [azAZ] [azAZ09]* ; // match usual identifier spec

DASHBRACK : [\\]]+ ; // match or] one or more times

’x’..’y’ Match any single character between range x and y, inclusively. E.g., ’a’..’z’. ’a’..’z’ is identical to [a-z].

T

Invoke lexer rule T; recursion is allowed in general, but not left recursion. T can be a regular token or
fragment rule.

ID : LETTER (LETTER|'0'..'9')* ;

fragment

LETTER : [azAZ\u0080\u00FF_] ;

.

The dot is a single-character wildcard that matches any single character. Example:

ESC : '\\' . ; // match any escaped \x character

{«action»}

Lexer actions can appear anywhere as of 4.2, not just at the end of the outermost alternative. The lexer
executes the actions at the appropriate input position, according to the placement of the action within the
rule. To execute a single action for a role that has multiple alternatives, you can enclose the alts in
parentheses and put the action afterwards:

END : ('endif'|'end') {System.out.println("found an end");} ;

The action conforms to the syntax of the target language. ANTLR copies the action’s contents into the
generated code verbatim; there is no translation of expressions like $x.y as there is in parser actions.

Only actions within the outermost token rule are executed. In other words, if STRING calls ESC_CHAR and
ESC_CHAR has an action, that action is not executed when the lexer starts matching in STRING.

{«p»}?

Evaluate semantic predicate «p». If «p» evaluates to false at runtime, the surrounding rule becomes
“invisible” (nonviable). Expression «p» conforms to the target language syntax. While semantic predicates
can appear anywhere within a lexer rule, it is most efficient to have them at the end of the rule. The one
caveat is that semantic predicates must precede lexer actions. See Predicates in Lexer Rules.

~x

Match any single character not in the set described by x. Set x can be a single character literal, a range, or a
subrule set like ~(’x’|’y’|’z’) or ~[xyz]. Here is a rule that uses ~ to match any character other than characters
using ~[\r\n]*:

COMMENT : '#' ~[\r\n]* '\r'? '\n' > skip ;

Just as with parser rules, lexer rules allow subrules in parentheses and EBNF operators: ? , * , + . The COMMENT rule
illustrates the * and ? operators. A common use of + is [09]+ to match integers. Lexer subrules can also use the
nongreedy ? suffix on those EBNF operators.

Appendix A
LC3

A.1 Installing Pennsim and getting started

To install and use PennSim, read the following documentation :

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

A.2 The LC3 architecture

Memory, Registers The LC-3 memory is shared into words of 16 bits, with address of size 16 bits (from
(0000)H to (FFFF)H).

The LC-3 has 8 main registers : R0, . . . , R7. R6 is reserved for the execution stack handling, R7 for the
routine return address. They are also specific 16 bits registers: PC (Program Counter), IR (Instruction Register),
PSR (Program Status Register).

The PSR has 3 bits N,Z and P that indicate if the last value writen in one of the R0 to R7 registers (viewed as
a 16bits 2-complement integer) is strictly negative (N), nul (Z) of strictly positive(P).

Instructions :

Syntax Action NZP
NOT DR,SR DR <- not SR *
ADD DR,SR1,SR2 DR <- SR1 + SR2 *
ADD DR,SR1,Imm5 DR <- SR1 + SEXT(Imm5) *
AND DR,SR1,SR2 DR <- SR1 and SR2 *
AND DR,SR1,Imm5 DR <- SR1 and SEXT(Imm5) *
LEA DR,label DR <- PC + SEXT(PCoffset9) *
LD DR,label DR <- mem[PC + SEXT(PCoffset9)] *
ST SR,label mem[PC + SEXT(PCoffset9)] <- SR
LDR DR,BaseR,Offset6 DR <- mem[BaseR + SEXT(Offset6)] *
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] <- SR
BR[n][z][p] label Si (cond) PC <- PC + SEXT(PCoffset9)
NOP No Operation
RET PC <- R7
JSR label R7 <- PC; PC <- PC + SEXT(PCoffset11)

Assembly directives

.ORIG add Specifies the address where to put the instruction that follows

.END Terminates a block of instructions

.FILL val Reserves a 16-bits word and store the given value at this address

.BLKW nb Reserves nb (consecutive) blocks of 16 bits at this address
; Comments

Predefined interruptions TRAP gives a way to implement system calls, each of them is identified by a 8-bit
constant. This is handled by the OS of the LC-3. The following macros indicate how to call them:

instruction macro description
TRAP x00 HALT ends a program (give back decisions to OS)
TRAP x20 GETC reads from the keyboard an ASCII char, and puts its value into R0
TRAP x21 OUT writes on the screen the ASCII char of R0
TRAP x22 PUTS writes on screen the string whose address of first caracter is stored in R0
TRAP x23 IN reads from keyboard an ASCII char, outputs on screen and stores its value in R0

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain 4/5

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Exercices (TD) #A – 2016

Constants : The integer constants encoded in hexadecimal are prefixed by x, in decimal by an optional # ;
they can appear as parameters of the LC-3 instructions (immediate operands, be careful with the sizes) and
directives like .ORIG, .FILL et .BLKW.

Coding tricks
• Initialisation to zero of a given register: AND Ri,Ri,#0
• Initialisation to a constant n (representable on 5 bits in complement to 2):
AND Ri,Ri,#0
ADD Ri,Ri,n

• Computation of the (integer) opposite Ri ← (−R j) (1+ complement to 2):
NOT Ri,Rj
ADD Ri,Ri,#1

• Multiplication Ri ← 2R j : ADD Ri,Rj,Rj
• Copy Ri ← R j : ADD Ri,Rj,#0

A.3 LC3 simplified instruction set

Here is a recap of instructions and their encoding:

syntaxe action NZP codage
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1
ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2
ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5
AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2
AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5
LEA DR,label DR ← PC + SEXT(PCoffset9) * 1 1 1 0 DR PCoffset9
LD DR,label DR ← mem[PC + SEXT(PCoffset9)] * 0 0 1 0 DR PCoffset9
ST SR,label mem[PC + SEXT(PCoffset9)] ← SR 0 0 1 1 SR PCoffset9
LDR DR,BaseR,Offset6 DR ← mem[BaseR + SEXT(Offset6)] * 0 1 1 0 DR BaseR Offset6
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] ← SR 0 1 1 1 SR BaseR Offset6
BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCoffset9) 0 0 0 0 n z p PCoffset9
NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RET (JMP R7) PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
JSR label R7 ← PC; PC ← PC + SEXT(PCoffset11) 0 1 0 0 1 PCoffset11

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain 5/5

	LC-3 Architecture, and Lexical Analysis
	The LC-3 architecture
	Lexical Analysis

	LC3
	Installing Pennsim and getting started
	The LC3 architecture
	LC3 simplified instruction set

