Exercise session 4
Liveness analysis, register allocation

In the following exercises we are looking for compiler independant optimisations (on the 3-address code). The

goal here is to allocate registers with as few “spilled variables” as possible.

4.1 Liveness analysis

First, reread the slides of the course with the help of your teaching assistant (slides 13 to 19):

http://laure.gonnord.org/pro/teaching/MIF08_Compill1617/07-RegisterAlloc.pdf

Let us recall the notations here: A variable at the left-hand side of an assignement is killed by the block. A

variable that appears in this bloc is generated.

LWoris (0) = {Q’

if ¢ = final

U{LVentryw,”w/,é) € flow(G)}

LVentry(€) = (LVexi (O\killry (£)) U genpy (£)

The sets are initialised to @ and computed iteratively, until reaching a fixpoint.

EXERCISE #1 » Live variables
Generate the CFG for the following program:

while d>0 then {

a:=b+c;

d:=d-b;

e:=a+f;

if e>0 then {
f:=a+d;
b:=d+f;

}

else{
e:=a-c;
}

b:=a+c;

}
On this CFG:

¢ Compute Gen, Kill for each block ¢

* Compute In(f) = LV,psry(€) and Out(€) = LVey i (£) iteratively.

* Suppress the dead code.

Step 1

Step

Step

Step

| kill(¢) | gen(¥) || In(€) | Out(¥)

In(¢)

Out(¥)

In(¢)

Out(¥)

In(¢)

Out(¢)

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain

http://laure.gonnord.org/pro/teaching/MIF08_Compil1617/07-RegisterAlloc.pdf

Faculté des Sciences Lyon1, Département Informatique, M1

MIF08 Exercices (TD) #4 — 2016

Step Step Step Step
kill(¢) | gen(d) || In(f) | Out(®) || In(¥) | Out(¥) || In(f) | Out(¥) || In(¢) | Out(¥)
EXERCISE #2 » Live Variables
After code generation, we obtain the following graph:
ql: i:=m-1
g2: J:=n
q3: a:=u_l
On this graph, perform liveness analysis and suppress the dead code.
Step 1 Step Step Step
| killl0) | gen(®) || In(€) | Out(?) || In(f) | Out(®) || In(€) | Out(¥) || In(f) | Out(¥)
Step Step Step Step
| killl0) | gen(®) || In(€) | Out(?) || In(f) | Out(®) || In(€) | Out(¥) || In() | Out(¥)

4.2 Register Allocation

EXERCISE #3 » Code production and register allocation
Consider the expression E = ((n * (n+ 1)) + (2 * n). We assume that we have:
¢ A multiplication instructionmul t1,t2,t3 that computes t1 := t2*¢3.
¢ A “immediate load” instruction 1di t1 4.
¢ The variable n is stored in the stack slot referred as [#n] in the load instruction.

1. Generate a 3 address-code with temporaries and LDR instruction to load n. Do it as blindly as possible
(no temporary recycling).

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain

28

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Exercices (TD) #-2016

2. (Without applying liveness analysis) Draw the liveness intervals. How many registers are sufficient to
compute this expression?

3. Draw the interference graph (nodes are variables, edges are liveness conflicts).

4. Color this graph with three colors using the algorithm seen in the course (http://laure.gonnord.
org/pro/teaching/MIF08_Compil1617/07-RegisterAlloc.pdf, slides 27-30).

5. Give a register allocation with K = 2 registers using the iterative register allocation algorithm seen in
course.

Sylvain Brandel, Laure Gonnord, Nicolas Louvet, Xavier Urbain 3

http://laure.gonnord.org/pro/teaching/MIF08_Compil1617/07-RegisterAlloc.pdf
http://laure.gonnord.org/pro/teaching/MIF08_Compil1617/07-RegisterAlloc.pdf

	Liveness analysis, register allocation
	Liveness analysis
	Register Allocation

