
Lab 1
Warm-up : Python and the target machine : LC-3

Credits

This sequence of compilation labs has been inspired by those designed by C. Alias and G. Iooss in 2013/14. In
2016/17 we changed the support language for Python and the target machine LC-3.

Objective

• Start with Python
• Be familiar with the LC-3 instruction set.
• Understand how it executes on the LC-3 processor with the help of a simulator.
• Write simple programs, assemble, execute.

1.1 Quick intro to Python - 1h max

This part is strongly inspired by the Project 1 of ENSL (L3).

Please use a correct text editor ! We don’t really care if it is SublimeText, Emacs, Atome or Vim, but please
use a text editor made for programming.
https://www.python.org/Official tutorial: https://docs.python.org/2/tutorial/An amazing in-

teractive one http://www.learnpython.org/en/Welcome

Inside the interpreter

And now, let’s get to the heart of the matter.

EXERCISE #1 Ï Launch!
Launch the Python interpreter. Which version is it ? Use a version of Python not older than 2.7. Quit the
interpreter with CTRL-D or quit().

EXERCISE #2 Ï
Launch the interpreter in interactive mode and use it as a calculator to solve these equations:

2+2 = x

11 = 3k + r

where k and r positive or null integers
2798 mod 97 = y

EXERCISE #3 Ï Strings
Try the following code:

x = ’na ’
’Ba ’ + 2 * x

Then write "j’aime les bons bonbons" with the same technique.

Laure Gonnord and the pedagogical team of MIF08 1/6

https://www.python.org/
https://docs.python.org/2/tutorial/
http://www.learnpython.org/en/Welcome

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #1 – 2016

Lists

EXERCISE #4 Ï Lists
Create a list li of integers containing various éléments. Replace one of the elements with a new value. At last,
use + or += to add elements at the end of the list.

EXERCISE #5 Ï Sorts
Sort a list using function sorted. What is the complixity in the worst case? In the best case? Use function
len(); same questions.

Print

EXERCISE #6 Ï Formatting
Give 3 different ways of building the following character string:
"2.21 Gigawatts !! 2.21 Gigawatts !! My godness !"using one variable x = 2.21, and another vari-
able that uses str(), then the operator %, then the method .format().

Tiny programs

Now, write your programs in .py files, starting with:

-*- coding: utf-8 -*-

to avoid encoding issues

EXERCISE #7 Ï Hello
Edit a file named hello.pywith the following content:

−*− coding : utf−8 −*−
print " Hello World"

Save, execute with: python hello.py.

EXERCISE #8 Ï If then else
Write a program that initializes an int value to a number given by the user (use input()) and prints a different
message according to its parity (odd/even).

EXERCISE #9 Ï While
Write a program that declares two integer values a and b, then computes and prints their pgcd.

EXERCISE #10 Ï Imperative For
Using the construction for i in ..., write a programs that sums all even i from 2 to 42

EXERCISE #11 Ï For expression / Lists

• Write a program that declares and initialises a list, and computes the sum of all its elements.
• Write a 1-line code that, from a list l, returns a list whose elements are the squares of the elements in l.
• Write a 1-line code that, from a list l, returns a liste containing the even elements of l.l.

EXERCISE #12 Ï Dicts

1. What are the types of {}, {’a’}, {’a’, ’b’} and {’a’: ’b’}?

2. What is the following code doing (where t is a dictionary):

while id in t :
id = t [id]

print (id)

What is the problem?

Laure Gonnord and the pedagogical team of MIF08 2/6

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #1 – 2016

3. Write a code doing the same operation but without the same drawback (i.e.: if needed, it doesn’t print
anything)

EXERCISE #13 Ï Functions

1. Declare a function fact that computes the factorial of a number.

2. What returns help(fact)? If it is not done, document your function.

1.2 The LC-3 processor, instruction set, simulator

EXERCISE #14 Ï Configuration
To install and run PennSim, you can follow this simple guide up to step 4: https://www.cis.upenn.edu/
~milom/cse240-Fall06/pennsim/pennsim-guide.html

In the architecture course (LIF6), you already saw a version of the target machine LC-3. The instruction set
is depicted in Appendix A.

EXERCISE #15 Ï TD : skip if you are late
Write a program in LC-3 assembly that writes the character ‘Z’ 10 times in the output.

EXERCISE #16 Ï Hand assembling
Assemble by hand the two instructions :

begin:
2 AND r0 r0 #0 ;

BRp begin

You will need the set of instructions depicted in Appendix A and their associated opcode. Verify with Pennsim.

EXERCISE #17 Ï Run the simulator with the hex code

Run the simulation step-by-step on the file tp1-52.asm :

Listing 1.1: tp1-52.asm

; ; Author: Bill Slough for MAT 3670
2 ; ; Adapted by Laure Gonnord, oct 2014.

.ORIG X3000 ; where to load the program in memory

.FILL x5020

.FILL x1221

.FILL xE404
7 .FILL x6681

.FILL x1262

.FILL x16FF

.FILL x03FD

.FILL xF025
12 .FILL x0006

.END

. Even if we have “assembled” the program by hand, we still need to use the command as in order to create
the corresponding binary file .obj. Carefully follow each step of the execution. Note that the LC-3 simulator
gives an equivalent in assembly language for each instruction.

Until now, we have written programs by putting the encoded instructions directly into the memory. From
now on, we are going to write programs using an easier approach. We are going to write instructions using the
LC-3 assembly.

EXERCISE #18 Ï Execution and modification

Laure Gonnord and the pedagogical team of MIF08 3/6

https://www.cis.upenn.edu/~milom/cse240-Fall06/pennsim/pennsim-guide.html
https://www.cis.upenn.edu/~milom/cse240-Fall06/pennsim/pennsim-guide.html

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab # – 2016

1. Guess the purpose of the following files: tp1-54a.asm et tp1-54b.asm. Check with the simulator. What
is the difference between the primitives PUTS and OUT, that are provided by the operating system?

Listing 1.2: tp1-54a.asm

; ; Author: Bill Slough MAT 3670
2 ; ; Adapted by Laure Gonnord, oct 2014.

.ORIG x3000 ; specify where to load the program in memory
LEA R0,HELLO
PUTS
LEA R0,COURSE

7 PUTS
HALT

HELLO: .STRINGZ "Hello, world!\n"
COURSE: .STRINGZ "LIF6\n"

.END

Listing 1.3: tp1-54b.asm

; ; Author: Bill Slough for MAT 3670
; ; Adapted by Laure Gonnord, oct 2014.

.ORIG x3000
4 LD R1,N

NOT R1,R1
ADD R1,R1,#1 ; R1 = −N
AND R2,R2,#0

LOOP: ADD R3,R2,R1
9 BRzp ELOOP

LD R0,STAR
OUT
ADD R2,R2,#1
BR LOOP

14 ELOOP: LEA R0,NEWLN
PUTS

STOP: HALT
N: .FILL 6
STAR: .FILL x2A ; the character to display

19 NEWLN: .STRINGZ "\n"
.END

2. Write a program in LC-3 assembly that computes the min and max of two integers, and store the result
in a precise location of the memory that has the label min. Try with different values.

EXERCISE #19 Ï Algo in LC-3 assembly - Bonus
Write and execute the following programs in assembly :

• Draw squares and triangles of stars (character ’*’) of size n, n being given by the user.
• Count the number of non-nul bits of a given integer.

Laure Gonnord and the pedagogical team of MIF08 4/6

Appendix A
LC3

A.1 Installing Pennsim and getting started

To install and use PennSim, read the following documentation :

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

A.2 The LC3 architecture

Memory, Registers The LC-3 memory is shared into words of 16 bits, with address of size 16 bits (from
(0000)H to (FFFF)H).

The LC-3 has 8 main registers : R0, . . . , R7. R6 is reserved for the execution stack handling, R7 for the
routine return address. They are also specific 16 bits registers: PC (Program Counter), IR (Instruction Register),
PSR (Program Status Register).

The PSR has 3 bits N,Z and P that indicate if the last value writen in one of the R0 to R7 registers (viewed as
a 16bits 2-complement integer) is strictly negative (N), nul (Z) of strictly positive(P).

Instructions :

Syntax Action NZP
NOT DR,SR DR <- not SR *
ADD DR,SR1,SR2 DR <- SR1 + SR2 *
ADD DR,SR1,Imm5 DR <- SR1 + SEXT(Imm5) *
AND DR,SR1,SR2 DR <- SR1 and SR2 *
AND DR,SR1,Imm5 DR <- SR1 and SEXT(Imm5) *
LEA DR,label DR <- PC + SEXT(PCoffset9) *
LD DR,label DR <- mem[PC + SEXT(PCoffset9)] *
ST SR,label mem[PC + SEXT(PCoffset9)] <- SR
LDR DR,BaseR,Offset6 DR <- mem[BaseR + SEXT(Offset6)] *
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] <- SR
BR[n][z][p] label Si (cond) PC <- PC + SEXT(PCoffset9)
NOP No Operation
RET PC <- R7
JSR label R7 <- PC; PC <- PC + SEXT(PCoffset11)

Assembly directives

.ORIG add Specifies the address where to put the instruction that follows

.END Terminates a block of instructions

.FILL val Reserves a 16-bits word and store the given value at this address

.BLKW nb Reserves nb (consecutive) blocks of 16 bits at this address
; Comments

Predefined interruptions TRAP gives a way to implement system calls, each of them is identified by a 8-bit
constant. This is handled by the OS of the LC-3. The following macros indicate how to call them:

instruction macro description
TRAP x00 HALT ends a program (give back decisions to OS)
TRAP x20 GETC reads from the keyboard an ASCII char, and puts its value into R0
TRAP x21 OUT writes on the screen the ASCII char of R0
TRAP x22 PUTS writes on screen the string whose address of first caracter is stored in R0
TRAP x23 IN reads from keyboard an ASCII char, outputs on screen and stores its value in R0

Laure Gonnord and the pedagogical team of MIF08 5/6

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #A – 2016

Constants : The integer constants encoded in hexadecimal are prefixed by x, in decimal by an optional # ;
they can appear as parameters of the LC-3 instructions (immediate operands, be careful with the sizes) and
directives like .ORIG, .FILL et .BLKW.

Coding tricks
• Initialisation to zero of a given register: AND Ri,Ri,#0
• Initialisation to a constant n (representable on 5 bits in complement to 2):
AND Ri,Ri,#0
ADD Ri,Ri,n

• Computation of the (integer) opposite Ri ← (−R j) (1+ complement to 2):
NOT Ri,Rj
ADD Ri,Ri,#1

• Multiplication Ri ← 2R j : ADD Ri,Rj,Rj
• Copy Ri ← R j : ADD Ri,Rj,#0

A.3 LC3 simplified instruction set

Here is a recap of instructions and their encoding:

syntaxe action NZP codage
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1
ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2
ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5
AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2
AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5
LEA DR,label DR ← PC + SEXT(PCoffset9) * 1 1 1 0 DR PCoffset9
LD DR,label DR ← mem[PC + SEXT(PCoffset9)] * 0 0 1 0 DR PCoffset9
ST SR,label mem[PC + SEXT(PCoffset9)] ← SR 0 0 1 1 SR PCoffset9
LDR DR,BaseR,Offset6 DR ← mem[BaseR + SEXT(Offset6)] * 0 1 1 0 DR BaseR Offset6
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] ← SR 0 1 1 1 SR BaseR Offset6
BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCoffset9) 0 0 0 0 n z p PCoffset9
NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RET (JMP R7) PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
JSR label R7 ← PC; PC ← PC + SEXT(PCoffset11) 0 1 0 0 1 PCoffset11

Laure Gonnord and the pedagogical team of MIF08 6/6

	Warm-up : Python and the target machine : LC-3
	Quick intro to Python - 1h max
	Inside the interpreter
	Tiny programs

	The LC-3 processor, instruction set, simulator

	LC3
	Installing Pennsim and getting started
	The LC3 architecture
	LC3 simplified instruction set

