
Lab 5
Code generation with smart IRs

Objective

• Construct a CFG, and the interference graph.
• Allocate registers and produce final code

During the previous lab, you have written a dummy code generator for the Mu language. In this lab the
objective is to generate a more efficient LC3 code. Your code is due on TOMUSS on December, 9th (code,
readme, relevant testfiles, makefile and scripts if any).

First download the archive from the course website.

Todo in this lab:
• Paperwork in Ex1.
• Pertinent tests in Ex2.
• Gen and Kill set initialisations in Ex3.
• Interference graph construction in Ex4.
• Graph coloration call + code generation (printing method) in Ex5.
• Modify register coloring in Ex6 + code generation.

Graphviz install - Nautibus On the Nautibus’s machines, graphviz is already installed but notgraphviz-dev,
however, we installed it for you, you only have to install the PYTHON binding:

pip install --user networkx
pip install --user graphviz
pip install --user pygraphviz
--install-option="--include-path=/home/pers/laure.gonnord/include"
--install-option="--library-path=/home/pers/laure.gonnord/lib/graphviz"

Graphviz install: on your machines First install Graphviz, and then the python bindings:

apt-get install graphviz graphviz-dev
pip install --user networkx
pip install --user graphviz
pip install --user pygraphviz
--install-option="--include-path=/usr/include/graphviz"
--install-option="--library-path=/usr/lib/graphviz/"

5.1 CFG Construction and liveness analysis

EXERCISE #1 Ï By hand
For the three following examples, draw by hand the 3-address code CFG (where block are individual 3-address
code statements with temporaries):

x=2;
y=2+x;
z=x+y;
x=7;

x=2;
if (x < 4)

x=4;
else

x=5;
y=x+1;

x=0;
while (x < 4){

x=x+1;
}
y=x+3;
z=y+x;

Laure Gonnord, and al. 1/4

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #5 – 2016

EXERCISE #2 Ï Play with the CFG construction
We give you the visitor code for the CFG construction. This is an adaptation of the 3-address code generation
you made in the previous lab, API calls that generate code, for instance:

s e l f . _prog . addInstructionNOT (dr , reg)

have been replaced by the same code generation inside a new block:

s e l f . _cfg . append(BlockNOT(dr , reg))

All you have to do in this exercise is to test this CFG construction: Main.py already contains a call to the
function that prints a dot file from the CFG (A dot file and its corresponding pdf file must be generated next
to the mu input file).

1. Write simple programs without branches and loops and observe the obtained CFGs.
2. Observe the CFG construction for tests and loops:

Listing 5.1: MyMuVisitor

We have a branch!
blockBRn = self._cfg.append(BlockBR("n",labelfalse))

We create the true and false branches
blockTrue = blockBRn.append(BlockLabel(labeltrue)) # TRUE case

comes first
blockFalse = blockBRn.append(BlockLabel(labelfalse))

TRUE case:
self._cfg.setEnd(blockTrue) # The end of the CFG now points to

blockTrue
self._cfg.append(...)
endTrue = self._cfg.append(BlockGOTO(labelend)) # When done, we

jump to labelend

FALSE case:
self._cfg.setEnd(blockFalse)
endFalse = self._cfg.append(...)

Finally, we merge the branches
blockLabelend = BlockLABEL(labelend) # Must be the last block

created
self._cfg.setEnd(endTrue).append(blockLabelend)
self._cfg.setEnd(endFalse).append(blockLabelend)

3. Write programs to test the CFG construction for tests, imbricated tests, and while loops.

EXERCISE #3 Ï Liveness Analysis
For the liveness analysis, in the CFG.py file we give you a method that performs the liveness dataflow analysis
on the CFG 1. However, it doesn’t work out-of-the-shell since the Gen(B) and K i l l (B) are not initialised.

1. Look at the code and observe the two-level implementation (block, graph).
2. Initialise the Gen(B) and K i l l (B) for each block (statement or comment). Be careful to properly handle

the following cases:
ADD temp1 temp1 12
and
AND temp1 temp1 0
Be careful not to consider constants (imm5) as generated variables.

3. Uncomment the method call in the main PYTHON file.
4. Write pertinent tests to test this dataflow analysis.

1“while it is not finished, store the old values for liveness sets, do an iteration (propage information from sons to fathers), decide if its
finished”

Laure Gonnord, and al. 2/4

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #5 – 2016

EXERCISE #4 Ï Interference graph
We recall that two temporaries are in conflict if they are simultaneously alive after a given instruction, which
means:

• There exists a block (an instruction) b and x, y ∈ LVout (b)
• OR There exist a block b such that x ∈ LVout (b) and y is defined in the block
• OR the converse.

For the two last cases, consider the following list of instructions:

y=2
x=1
z=y+1

where x is not alive after the x=1 statement, however x is in conflict with y since we generate the code for x=1
while y is alive2.

From the result of the previous exercise, construct the interference graph of your program (each time a
pair of temporaries 3 are in conflict, add an edge between them). We give you a non-oriented graph API
(LibGraphes.py, and an example of use in ExGrapĥes.py) for that. Use the print_dot method and rele-
vant tests to validate your code.

5.2 Register allocation and code production

Instead of the iterative algorithm of the course, we will implement the following algorithm for k register allo-
cation:

• Color the graph with k −3 colors (R0 to R4).
• All the other variables will be allocated on the stack. To compute the offset from the stack pointer (R6),

recolor the subgraph of remaining variables with an infinite number of colors.
Then the code generation:

• For non-spilled variable: replace the temporary with its associated color/register.
• For a spilled variable (say, temp5 here):
ADD temp6 temp1 temp5
becomes (we use R5 and R7 to make load and stores for spilled variables):
LDR R5 R6 #-dec
ADD alloc(temp6) R5 alloc(temp5)
(this is why we need to color with k −3 registers).

EXERCISE #5 Ï Register Allocation and code production without spilled variables
Use the algorithm (with k=8) and the coloration method of the LibGraphes class to allocate registers (or a
place in memory). For this particular exercise, only consider the favorable case when the graph is 5-colorable.

• Call the graph coloring implementation on your interference graph.
• Test on tiny test files that do not need more than 5 physical registers. . .
• Compare the number of registers that are necessary for your programs and the number of temporaries

that where generated (print!).
• Modify the CFG print method to be able to replace temporaries with their “color”, ie allocated register.
• Test the generated code on Pennsim !

EXERCISE #6 Ï Allocation of spilled variables
Now for spilled variables, you have to:

1. Change a bit the coloring method to output the subgraph of variables to spill.
2. Recall this coloring method with an infinite4 number of colors.
3. Generate code with register-allocated variables as well as spilled variables.
4. Test on Pennsim.

2Another solution consists in eliminating dead code before generating the interference graph.
3Here is a bit of PYTHON code for enumerating pairs of elements of t: tpairs = [(t[p1], t[p2]) for p1 in range(len(t)) for

p2 in range(p1+1,len(t))]
4100 is a good approximation of infinite here!

Laure Gonnord, and al. 3/4

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab # – 2016

5.3 Bonus: to go further

If you have time, you can choose among the following improvements for your compiler.

EXERCISE #7 Ï Optimise the test process!
Use the LC3 command line generator and scripts to perform your tests:

https://highered.mheducation.com/sites/0072467509/student_view0/lc-3_simulator.html

You can get inspiration from this webpage:

https://www.cs.colostate.edu/~fsieker/misc/lc3.html

EXERCISE #8 Ï Big constants
Find a way to handle numerical constants that are two big to be stored in 5 bits.

EXERCISE #9 Ï Chains
Find a way to handle log instructions:

• First, constant chains that will be stored in memory.
LEA R0, mychain ; in R0 only
PUTS #print
...
mychain: .STRINGZ "Hello"
prints “Hello.”.

• Then, numerical values computed in a given register (you may have to store it somewhere).
• And finally all log instructions.
• If you want to print a char, you must store its (ASCII) value in the R0 register and use the OUT system call

to print it.

EXERCISE #10 Ï Constant propagation
Design and implement a “constant propagation” dataflow algorithm. Design new examples to test your opti-
misation.

EXERCISE #11 Ï Multiplication
Implement a multiplication routine, and produce the code for the multiplication that calls this routine.

Laure Gonnord, and al. 4/4

https://highered.mheducation.com/sites/0072467509/student_view0/lc-3_simulator.html
https://www.cs.colostate.edu/~fsieker/misc/lc3.html

	Code generation with smart IRs
	CFG Construction and liveness analysis
	Register allocation and code production
	Bonus: to go further

