
Exercise session 4
Register allocation and final code generation

In the following exercises we are looking for compiler independant optimisations (on the 3-address code). The
goal here is to allocate registers with as few “spilled variables” as possible.

4.1 Register Allocation

EXERCISE #1 Ï Code production and register allocation
Consider the expression E = ((n ∗ (n +1))+ (2∗n). We assume that we have:

• A multiplication instruction mul t1,t2,t3 that computes t1 := t2*t3.
• The variable n is stored in the stack slot referred as [n] in the load (rmem) instruction.

1. Generate a 3 address-code with temporaries and r mem instruction to load n. Do it as blindly as possible
(no temporary recycling).

2. (Without applying liveness analysis) Draw the liveness intervals. How many registers are sufficient to
compute this expression?

3. Draw the interference graph (nodes are variables, edges are liveness conflicts).

4. Color this graph with three colors using the algorithm seen in the course.

5. Give a register allocation with K = 2 registers using the iterative register allocation algorithm seen in
course.

We recall the following algorithm for final register allocation after coloring:
• For non-spilled variable: replace the temporary with its associated color/register.
• For a spilled variable (say, temp5 here, assigned to color 2):
ADD temp6 temp1 temp5
becomes (we use R0, R1,R2 to make load and stores for spilled variables):
SUB R0, R6, 2
RMEM R1, [R0]
ADD alloc(temp6), alloc(temp1), R1
where al loc(temp1) denotes the allocation of temp1 (if it is a spilled variable, we have to first load its
value in R2).

EXERCISE #2 Ï Register allocation, adapted from Exam, 2016

We consider (in two columns) the following LEIA code. The ti are temporaries to be allocated (in registers,
in memory). For this exercise, we consider that we have two novel instructions that are capable to directly
read/write at memory labels (ld , st).

.set R6 spinit
[...]
ld t1, label1
ld t2, label2
sub t3, t1, t2
ld t4, label3
ld t5, label4
sub t6, t4, t5
add t7, t6, 0

add t8, t3, t7
st t8, label5
jump 0

Sylvain Brandel, Laure Gonnord, Matthieu Moy, Xavier Urbain 1/2



Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Exercices (TD) # – 2017

;;données/résultats
label1 : .word 2
label2 : .word 3
label3 : .word -1
label4 : .word 7
label5 : .reserve 1

;;gestion de la pile
spinit:
.reserve 42
stackend: ;; adresse du fond de la pile

.END

1. What is the computed expression ? Where will it be stored ?

2. Fill the following table with stars: put a star for a given temporary at a given line if and only if it is alive
at the entry of the instruction. After the last store, all temporaries are supposed to be dead.

code t1 t2 t3 t4 t5 t6 t7 t8
ld t1, label1
ld t2, label2
sub t3,t1,t2
ld t4, label3
ld t5, label4
sub t6,t4,t5
add t7, t6, 0
add t8,t3,t7
st t8, label5

3. Draw the interference graph.

4. Color the graph with the algorithm from the course with 3 colors (green, blue, red, in this order).

5. We decide to spill the t3 register and place it in memory. Color the rest of the graph with 2 colors (green,
blue).

6. Generate the final code with two registers (r3,r4), r6 for the stack, r0,r1,r2 for the spill management.

Sylvain Brandel, Laure Gonnord, Matthieu Moy, Xavier Urbain 2/2


	Register allocation and final code generation
	Register Allocation


