
Lab 1
Warm-up : Python and the target machine :

SARUMAN

Objective

• Start with Python.
• Be familiar with the SARUMAN instruction set.1

• Understand how it executes on the SARUMAN processor with the help of a simulator.
• Write simple programs, assemble, execute.

Todo in this lab:
• Play and learn Python!
• Play and learn the SARUMAN ISA.
• Finish at home, nothing will be evaluated in this lab.

1.1 Quick intro to Python - 1h max

This part is strongly inspired by the Project 1 of ENSL (L3).

Please use a correct text editor ! We don’t really care if it is SublimeText, Emacs, Atom or Vim, but please
use a text editor made for programming.

https://www.python.org/Official tutorial: https://docs.python.org/3/tutorial/An amazing in-
teractive one http://www.learnpython.org/en/Welcome

1.1.1 Inside the interpreter

And now, let’s get to the heart of the matter.

EXERCISE #1 Ï Launch!
Launch the Python interpreter (python3, in the terminal). Which version is it ? Use a version of Python not
older than 3.5. Quit the interpreter with CTRL-D or quit().

EXERCISE #2 Ï
Launch the interpreter in interactive mode and use it as a calculator to solve these equations:

2+2 = x

11 = 3k + r

where k and r positive or null integers
2798 mod 97 = y

EXERCISE #3 Ï Strings
Try the following code:

x = ’na ’
’Ba ’ + 2 * x

Then write "j’aime les bons bonbons" with the same technique.

1SARUMAN stands for Stupid Address Registers, Useless Memory, Assembler Nonsense

Laure Gonnord, and al. 1/9

https://www.python.org/
https://docs.python.org/3/tutorial/
http://www.learnpython.org/en/Welcome

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #1 – 2018

Lists

EXERCISE #4 Ï Lists
Create a list li of integers containing various éléments. Replace one of the elements with a new value. At last,
use + or += to add elements at the end of the list.

EXERCISE #5 Ï Sorts
Sort a list using function sorted. What is the complixity in the worst case? In the best case? Use function
len(); same questions.

Print

EXERCISE #6 Ï Formatting
Give 3 different ways of building the following character string:
"2.21 Gigawatts !! 2.21 Gigawatts !! My godness !"using one variable x = 2.21, and another vari-
able that uses str(), then the operator %, then the method .format().

1.1.2 Tiny programs

Now, write your programs in .py files (with an editor). If you get encoding issue, add this at the beginning, but
it shouldn’t be needed with Python 3:

-*- coding: utf-8 -*-

EXERCISE #7 Ï Hello
Edit a file named hello.py with the following content:

print (" Hello World ")

Save, execute with: python3 hello.py.

EXERCISE #8 Ï If then else
Write a program that initializes an int value to a number given by the user (use input()) and prints a different
message according to its parity (odd/even).

EXERCISE #9 Ï While
Write a program that declares two integer values a and b, then computes and prints their pgcd.

EXERCISE #10 Ï Imperative For
Using the construction for i in ..., write a program that sums all even i from 2 to 42 (inclusive).

EXERCISE #11 Ï For expression / Lists

• Write a program that declares and initialises a list, and computes the sum of all its elements.
• Write a 1-line code that, from a list l, returns a list whose elements are the squares of the elements in l.
• Write a 1-line code that, from a list l, returns a liste containing the even elements of l.l.

EXERCISE #12 Ï Dicts

1. What are the types of {}, {’a’}, {’a’, ’b’} and {’a’: ’b’}?

2. What is the following code doing (where t is a dictionary):

while id in t :
id = t [id]

print (id)

What is the problem?

3. Write a code doing the same operation but without the same drawback (i.e.: if needed, it doesn’t print
anything)

Laure Gonnord, and al. 2/9

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #1 – 2018

EXERCISE #13 Ï Functions

1. Declare a function fact that computes the factorial of a number.

2. What returns help(fact)? If it is not done, document your function.

1.2 The SARUMAN processor, instruction set, simulator

EXERCISE #14 Ï Lab preparation
Clone the github repository for this year’s labs:

git clone https://github.com/lauregonnord/mif08-labs18.git

Then:

• In the saruman/emu/ directory, type make to compile the emulator. The assembler is saruman/asm.py.
Some more documentation can be found in the SARUMAN ISA on the course webpage and in Ap-
pendix A.

http://laure.gonnord.org/pro/teaching/compilM1.html

• You may have issues to compile the graphical version of the simulator, which is not mandatory at all.
This can be solved by compiling it with make -B NO_SDL=1

• On your personal machines you might have to install the libncurses5-dev package.

• The files you need for this lab are in TP01.

The assembly language for this year is a toy language called SARUMAN. We already played a bit with it in
the exercise session.

1.2.1 Assembling, disasembling

EXERCISE #15 Ï Hand assembling, simulation of the hex code
Assemble by hand the instructions :

begin:
2 and2i r0 0

cmpi r0 2
jumpif lt begin

print signed r0

You will need the set of instructions of the SARUMAN machine and their associated opcode. All the info
is in the ISA documentation (and in the simulator README file for graphical instructions). Save your (hex)

encoding in a file dummy.bin, and launch the SARUMAN simulator on it:

$./<path/to/simulateur>/emu --text dummy.bin

The --text option is needed to read pseudo-binary files where 0 and 1’s are actually written as text (ascii
characters).

You may add the --debug option to run the program step-by-step in a debugger (use the s command).
Carefully follow each step of the execution.
From now on, we are going to write programs using an easier approach. We are going to write instructions

using the SARUMAN assembly.

Laure Gonnord, and al. 3/9

http://laure.gonnord.org/pro/teaching/compilM1.html

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab # – 2018

1.2.2 SARUMAN Simulator

EXERCISE #16 Ï Execution and debugging

1. First test assembling and simulation on the file tp1-simple.s:
$python3 <path/to/assembleur/>asm.py -b tp1-simple.s
$</path/to/emu/simulateur/>emu ./tp1-simple.bin

2. Check if your guess in the exercice sheet (Chapter 1, ex#3) was right by executing ex5.bin.
The simulator comes with a built-in debugger (option “-d” or “-debug”). The interface is divided into
multiple parts, and should render like this:

+---------------------+---------------+-------------+
Dissassembled code	Register Info	Memory view
+---------------------+---------------+-------------+		
Interactive shell		
+---+

If it does not look like this, your terminal might be too small, or something might be broken.

3. Use the debugger to follow the execution of tp1-simple.bin.
4. Guess the output of the program nohalt.s, then use the simulator to check if your assumtion was right.

Use the built-in debugger to follow the execution of the program, and find out or confirm happened.

Remark 1: When displaying a binary file on a terminal (e.g. using the cat command), many characters
do not print correctly. Check the catmanual (especially options “-v” and “-A”) to find out how to fix this.
Be sure your text editor is not doing some funny stuff too with special characters.

Remark 2: You can use the “xxd” program to display files content in binary or hexadecimal, e.g “xxd -b
tp1-simble.bin” (binary)

EXERCISE #17 Ï Algo in SARUMAN assembly
Write a program in SARUMAN assembly that computes the min and max of two integers, and stores the result
in a precise location of the memory that has the label min. Try with different values.

EXERCISE #18 Ï (Advanced) Algo in SARUMAN assembly

Write and execute the following programs in assembly :
• Count the number of non-nul bits of a given integer.
• Draw squares and triangles of stars (character ’*’) of size n, n being stored somewhere in memory.

Examples:
n=3 square:

n=3 triangle:
*
* *
* * *

1.2.3 Finished?

If you’re done with the lab, do the python tutorial at the following address:

https://docs.python.org/fr/3.5/tutorial/

Laure Gonnord, and al. 4/9

https://docs.python.org/fr/3.5/tutorial/

Appendix A
SARUMAN Assembly Documentation (ISA)

About

• ISA: Florent de Dinechin for ASR1, ENSL, 2017-18.

• Simulator and Assembler code: Maxime Darrin, Alain Delaët-Tixueil, Antonin Dudermel, Sébastien
Michelland, Alban Reynaud, L3 students at ENSL, 2017-18.

• Document: Remy Grüblatt, Laure Gonnord, Sébastien Michelland, and Matthieu Moy, for CAP and
MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the SARUMAN assembler and simulator, follow instructions of the first lab (git pull on the course lab
repository).

A.2 The SARUMAN architecture

Among others, the SARUMAN architecture has two particular features:

• The number of bits used to encode instructions is non constant. But for compilation, we do not care!

• Read and write instructions use special registers.

Here is an example of SARUMAN assembly code for 2018:

leti r0 17 ; initialisation of a register to 17
loop:

sub2i r0 1 ; subtraction of an immediate
jumpif nz loop ; equivalent to jump xx

Memory, Registers The memory is adressed by bits (and not words), from address 0.
The SARUMAN has 8 registers from r0 to r7. Only r71 is reserved for the routine return address. There are

specific registers (“counters”) for manipulating memory, namely a1 and a0. Finally, we have special registers
sp (Stack Counter) and pc (Program Counter). Accesses to registers are direct, and Section A.2 explains how to
access memory.

Shifts The directions for the shift are either "left" or "right".

Flags Each instruction may update carry flags (last column of A.1). Flags represent informations about the
last operation that modified them:

• z: The result of the previous operation was a zero.

• c: A carry happened during the previous operation.

• v: An overflow happened during the previous operation.

• n: The result of the previous operation is strictly negative (< 0).

Check the file mif08-labs18/saruman/doc/emu_flag_management.md for details.

1Registers are in lower case.

Laure Gonnord, and al. 5/9

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #A – 2018

Table A.1: SARUMAN instructions. For constants, padding is done with zeros (z) or sign extension (s).

opcode mnemonic operands description ext. Flags update

0000 add2 reg reg addition zcvn
0001 add2i reg const add immediate constant z zcvn
0010 sub2 reg reg subtraction zcvn
0011 sub2i reg const subtract immediate constant z zcvn
0100 cmp reg reg comparison zcvn
0101 cmpi reg const comparison with immediate constant s zcvn
0110 let reg reg register copy
0111 leti reg const fill register with constant s
1000 shift dir reg shiftval logical shift zcn
10010 readze ctr size reg read size memory bits (zero-extended) to reg
10011 readse ctr size reg read size memory bits (sign-extended) to reg
1010 jump addr relative jump
1011 jumpif cond addr conditional relative jump
110000 or2 reg reg logical bitwise or zcn
110001 or2i reg const logical bitwise or z zcn
110010 and2 reg reg logical bitwise and zcn
110011 and2i reg const logical bitwise and z zcn
110100 write ctr size reg write the lower size bits of reg to mem
110101 call addr sub-routine call s
110110 setctr ctr reg set one of the four counters to the content of reg
110111 getctr ctr reg copy the current value of a counter to reg
1110000 push reg push value of register on stack
1110001 return return from subroutine
1110010 add3 reg reg reg zcvn
1110011 add3i reg reg const z zcvn
1110100 sub3 reg reg reg zcvn
1110101 sub3i reg reg const z zcvn
1110110 and3 reg reg reg zcn
1110111 and3i reg reg const z zcn
1111000 or3 reg reg reg zcn
1111001 or3i reg reg const z zcn
1111010 xor3 reg reg reg zcn
1111011 xor3i reg reg const z zcn
1111100 asr3 reg reg shiftval zcn
1111101 sleep sleep
11111100 rand rand
11111101 lea reg addr load effective address addr
11111110 print type reg print
11111111 printi type const print

Constants: let and leti These expressions provide ways to initialize or copy registers.
The constants are encoded according to A.2 (encoding of ALU constants). For theleti instruction, padding

is done with sign extension. Thus:

1 leti r0 −17

stores the constant -17 in register r0, and the encoding of the instruction is:

0111 000 1011101111

Register copy is done with:

let r0 r1

Arithmetical and logical instructions Arithmetical and logical instructions have 2 or 3 operands:

add3i r1 r0 3 ; r1 <− r0+3
add2i r1 15 ; r1 <− r1+15
add3 r1 r2 r3 ; r1 <− r2+r3

4 add2 r1 r2 ; r1 <− r1+r2

Laure Gonnord, and al. 6/9

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #A – 2018

Table A.2: Constant encoding
addr : prefix-free encoding for addresses and moves
0 + 8 bits value of move on 8 bits
10 + 16 bits same on 16 bits
110 + 32 bits same on 32 bits
111 + 64 bits same on 64 bits

shiftval : prefix-free encoding of shift constants
0 + 6 bits constant between 0 and 63
1 constant value 1

const : prefix-free encoding of ALU constants
0 + 1 bit constant 0 ou 1
10 + 8 bits byte
110 + 32 bits
111 + 64 bits

size : prefix-free encoding of memory sizes
00 1 bit
01 4 bits
100 8 bits
101 16 bits
110 32 bits
111 64 bits

The first operand is always the destination register, and the two remaining operands are sources, registers or
constants. If a constant is used then its value is encoded in the instruction following the encoding depicted in
Table A.2. For instance:

1 add2i r1 15 ; r1 <− r1+15

is encoded as:

0001 001 10 00001111 ;
add2i, register 1, 1 byte constant (*addr* prefix code), value 15 and padding with 0

Be careful, add only uses positive constants:

add3i r1 r0 −12

Throw the following error:

couldn’t read UCONSTANT : The value is not in the right range

Branching (jump jumpif) Let a be the address of the instruction following the jump or call instruction, and
c the integer encoded in a constant of type addr (see Table A.2), and signed.

The jump instruction executes pc← a+c.
The jumpif instruction does the same, but only if the condition is true (see Section A.2).
The call instruction stores R7 in PC and jumps to the called address.
The return instruction does pc← R7.
In:

loop:
sub2i r0 1 ; substraction of an immediate
jumpif nz loop ; equivalent to jump −25

is assembled into

0011 000 01 ; 9 bits
1011 001 011100111 ; 16 bits
jump, nz, 0 (mv on 8 bits), -25 bits jump

Laure Gonnord, and al. 7/9

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #A – 2018

Table A.3: Tests

mnemonic description (after cmp op1 op2)

0 0 0 eq, z equal, op1 = op2
0 0 1 neq, nz not equal, op1 6= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 sge op1 ≥ op2, signed
1 0 1 ge, nc op1 ≥ op2, unsigned
1 1 0 lt, c op1 < op2, unsigned
1 1 1 sle op ≤ op2, signed

Table A.4: Counters (special registers).

encoding mnemonic description

00 pc program counter
01 sp stack pointer
10 a0 generic address counter
11 a1 generic address counter

Tests Operands 1 and 2 are encoded like in the ALU instructions. In particular the second operand can be an
immediate constant. The condition is encoded thanks to Table A.3.

In this class, we will use only the signed version of comparisons (sgt/slt/sle/sge, and eq/neq/z/nz
which work for both signed and unsigned). Not all unsigned comparisons are available, and they are mislead-
ing: don’t use them here.

Memory accesses Special registers a0, a1 are used to access memory.
The instructions readze, readse and write read or write the specified number of bits and also increment

the associated (address) registers:

readze a0 4 r1

reads 4 bits of memory content from the address stored in a0 and store them in r1 (with a zero padding). In
addition, a0 is incremented by 4.

write a1 2 r1

writes the lower 2 bits of register r1.
We can emulate the classical read operation in memory from an adress stored in a register r2 ← Mem[r1]:

setctr a0 r1
readse a0 xxx r2 ; xxx the number of bits to read

The instruction lea r3 label loads the address corresponding to label onto r3. For instance, the follow-
ing program:

lea r0 foo

3 foo:
.const 5 #10101

loads the adress of the constant. The # prefix is used to introduce a binary constant (10101, i.e. 21), and works
only for the .const directive. It is assembled into:

11111101 000 000000000
10101

The SARUMAN emulator’s memory layout is documented in the
cap-labs18/saruman/doc/emu_memory_layout.md file.

Laure Gonnord, and al. 8/9

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #A – 2018

Print Two examples of use of the native print instruction:

1 let r0 126
print char r0 ; "~"
print char ’\n’ ; newline
print signed r0 ; "126"
print unsigned r0 ; "0x7e"

6 print unsigned ’0’ ; "0x30"

You can also print a string at a given label with:

lea r0 str
print string r0 ; "Hello, World!"

4 str :
.string "Hello, World!"

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps.
• The keyword .const n xxxx reserves a memory cell initialized to the n bits constant xxxx.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• Hexadecimal constants are prefixed by 0x, for instance 0xff is decimal 255.
• Comments begin with a semicolum;

The assembly implements a stack in memory, from an address stored in the special register sp. We will use it
in Lab5.

Stopping execution When instructions terminate, the emulator halts the execution. But as it has no way of
differenciating instructions from data (like strings or constants), the emulator provides a way to stop execution
by detecting infinite self loops, such as this one:

halt:
jump halt

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

Laure Gonnord, and al. 9/9

	Warm-up : Python and the target machine : SARUMAN
	Quick intro to Python - 1h max
	Inside the interpreter
	Tiny programs

	The SARUMAN processor, instruction set, simulator
	Assembling, disasembling
	SARUMAN Simulator
	Finished?

	SARUMAN Assembly Documentation (ISA)
	Installing the simulator and getting started
	The SARUMAN architecture
	Help to encode constants

