
Lab 3
Evaluators and Types

Objective

• Understand visitors.
• Implement typers, evaluators as visitors.

EXERCISE #1 Ï Lab preparation
In the mif08-labs18 directory:

git pull

will provide you all the necessary files for this lab in TP03. ANTLR4 and pytest should be installed and
working like in Lab 2.

3.1 Demo: Implicit tree walking using Visitors

3.1.1 Evaluating arithmetic expressions with visitors

In the previous lab, we used an “attribute grammar” to evaluate arithmetic expressions during parsing. Today,
we are going to let ANTLR build the syntax tree entirely, and then traverse this tree using the Visitor design
pattern1. A visitor is a way to seperate algorithms from the data structure they apply to. For every possible
type of node in your AST, a visitor will implement a function that will apply to nodes of this type.

EXERCISE #2 Ï Demo: arithmetic expression evaluator (arith-visitor/)
Observe and play with the Arit.g4 grammar and its PYTHON Visitor :

$ make ; make run < myexample

Note that unlike the “attribute grammar” version that we used previously, the .g4 file does not contain Python
code at all.

Have a look at the AritVisitor.py, which is automatically generated by ANTLR4: it provides an abstract
visitor whose methods do nothing except a recursive call on children. Override these methods in order to make
them print the nodes’ content by editing the MyAritVisitor.py file (use print instructions).

Also note the #blabla pragmas after each rules in the g4 file. They are here to provide ANTLR4 a name
for each alternative in grammar rules. These names are used in the visitor classes, as method names that get
called when the associated rule is found (eg. #foo will get visitFoo(ctx) to be called).

We depict the relationship between visitors’ classes in Figure 3.1.

1https://en.wikipedia.org/wiki/Visitor_pattern

Laure Gonnord, and al. 1/6

https://en.wikipedia.org/wiki/Visitor_pattern

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #3 – 2018

Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 3.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTree visitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particuler type (here Multiplication). This process is depicted by the red cycle.

A last remark: when a ANTLR4 rule contains an operator alternative such as:

| expr pmop=(PLUS | MINUS) expr #additiveExpr

you can use the following code to match the operator:

if (ctx.pmop.type == AritParser.PLUS):
...

The objective is now to use visitors, to type and evaluate Mu programs, whose syntax is depicted in Figure 3.2.

EXERCISE #3 Ï Be prepared!
In the directory Mu-evalntype/, you will find:

• The Mu grammar (Mu.g4).
• A Main.py that parses the command line, does the lexical analysis and syntax analysis of the input file,

then launches the Typing visitor, and if the file is well typed, launches the Evaluator visitor.
• Two visitors to be completed: MuTypingVisitor.py and MuEvalVisitor.py.
• Some test cases, and a test infrastructure.

Laure Gonnord, and al. 2/6

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #3 – 2018

grammar Mu;

prog: vardecl_l block EOF #progRule;

vardecl_l: vardecl* #varDeclList;

vardecl: VAR id_l COL typee SCOL #varDecl;

id_l
: ID #idListBase
| ID COM id_l #idList
;

block: stat* #statList;

stat
: assignment
| if_stat
| while_stat
| log
| OTHER {print("unknown char: {}".format($OTHER.text))}
;

assignment: ID ASSIGN expr SCOL #assignStat;

if_stat: IF condition_block (ELSE IF condition_block)* (ELSE stat_block)? #ifStat;

condition_block: expr stat_block #condBlock;

stat_block
: OBRACE block CBRACE
| stat
;

while_stat: WHILE expr stat_block #whileStat;

log: LOG expr SCOL #logStat;

Figure 3.2: MU syntax. We omitted here the subgrammar for expressions

3.2 Typing the Mu-language (Mu-evalntype/)

The informal typing rules for the Mu language are:
• Variables must be declared before being used, and can be declared only once ;
• Binary operations (+, -, *, ==, !=, &&, ||, . . .) require both arguments to be of the same type (e.g. 1 + 2.0

is rejected) ;
• Boolean and integers are incompatible types (e.g. while 1 is rejected) ;
• Binary arithmetic operators return the same type as their operands (e.g. 2. + 3. is a float, 1 / 2 is the

integer division) ;
• + is accepted on string (it is the concatenation operator), no other arithmetic operator is allowed for

string ;
• Comparison operators (==, <=, . . .) and logic operators (&&, ||) return a Boolean ;
• == and != accept any type as operands ;
• Other comparison operators (<, >=, . . .) accept int and float operands only.

EXERCISE #4 Ï Demo: play with the Typing visitor
We provide you the code of the Typer for the Mu-language, whose objective is to implement the Typing rules

Laure Gonnord, and al. 3/6

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #3 – 2018

of the course. Open and observe MuTypingVisitor.py, and predict its behavior on the following Mu file:

var x:int;
x="blablabla";

Then, test with:

make run TESTFILE=ex-types/bad_type00.mu

Observe the behavior of the visitor on all test files in ex-types/. How do we handle:
• Multiplicative expressions with int and string operands ?
• Assignments to a variable which is not of the same type as the expression ?
• The variable type declarations ?

EXERCISE #5 Ï Demo: test infrastructure for bad-typed programs
On bad typed programs, what we expect from a good test infrastructure is that is is capable of checking if we
handled properly the case. This is solved by augmenting the pragma syntax of the previous lab: for instance:

var x:int;
x="blablabla";

EXPECTED
Mismatch types for x
EXITCODE 1

will be a successful unit test. Now, type:

make tests

and observe (Typing tests are those concerning files in ex-types/).

3.3 An evaluator for the Mu-language

The semantics of the Mu language (how to evaluate a given Mu program) is defined by induction on the syntax.
You already saw how to evaluate a given expression, this is depicted in Figure 3.3.

e ::= c

returns int(c) or float(c)

e ::= x

find value in dictionary and return it

e ::= e1+e2

let v1 = e1.visit() and v2 in e2.visit()
if v1 and v2 are numbers (int, float)
return v1+V2

else do some cast!

e ::= true

return true

e ::= e1 < e2

return e1.visit()<e2.visit()

Figure 3.3: Evaluation for expressions

Laure Gonnord, and al. 4/6

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #3 – 2018

x := e

let v = e.visit() in
store(x,v) #update the value in dict

log(e)

let v = e.visit() in
print(e) #python print

S1; S2

s1.visit()
s2.visit()

if b then S1 else S2

while b do S done

Figure 3.4: Evaluation for Statements

EXERCISE #6 Ï Evaluator rules (on paper)
First fill the empty cells in Figure 3.4, then ask your teaching assistant to correct them.

EXERCISE #7 Ï Evaluator!
Now you have to implement the evaluator of the Mu-language. We give you the structure of the code and the
implementation for numerical expressions and boolean expressions. The typechecking will be implemented
later. For now, you can reason in terms of “well-typed programs”.

Type:

make run TESTFILE=’ex/testxx.mu’

and the evaluator will be run on ex/testxx.mu (or on ex/test00.mu if you do not specify variable TESTFILE).
On the particular example ex/test00.mu observe how integer values, strings, boolean, floats values are
printed.

You still have to implement (in MuEvalVisitor.py):

Laure Gonnord, and al. 5/6

Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab # – 2018

1. Variable declarations (varDecl) and variable use (idAtom): your evaluator should use a table (dict in
PYTHON) to store variable definitions and check if variables are correctly defined and initialized. Refer
to the three test files ex/bad_defxx.mu for the expected error messages.

2. Statements: assignments, conditional blocks, tests, loops.

EXERCISE #8 Ï Unit tests
Test with make tests and appropriate test-suite. You must provide your own tests. The only outputs are the
one from the log function or the following error messages: “Undefined variable m”, “m has no value
yet!”. To properly test theex/bad_def*files, you will have to edit the python test scripttest_evaluator.py.

Test Infrastructure Tests work mostly as in the previous lab. For instance, if you fail test00.mu because you
printed 42 instead of 99.00, you will get this error:

_____________ TestCodeGen.test_expect[ex/test00.mu] _____________

self = <test_evaluator.TestCodeGen object at 0x7f0e0aa369b0>
filename = ’ex/test00.mu’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_expect(self, filename):

expect = self.extract_expect(filename)
eval = self.evaluate(filename)
if expect:

> assert(expect == eval)
E assert ’99.00\n1\n’ == ’42\n1\n’
E - 99.00
E + 42
E 1

test_evaluator.py:59: AssertionError

And if you did not print anything at all when 99.00 was expected, the last lines would be this instead:

if expect:
> assert(expect == eval)
E assert ’99.00\n1\n’ == ’1\n’
E - 99.00
E 1

test_evaluator.py:59: AssertionError

EXERCISE #9 Ï Archive
The evaluator (all exercises in Section 3.3) is due on TOMUSS on Friday, 18/01/2019 right after the demo
(5pm). Type make tar to obtain the archive to send (change your name in the Makefile before!). Your
archive must also contain tests and a README.md with your name, the functionality of the code, how to
use it, your design choices, and known bugs.

Laure Gonnord, and al. 6/6

	Evaluators and Types
	Demo: Implicit tree walking using Visitors
	Evaluating arithmetic expressions with visitors

	Typing the Mu-language (Mu-evalntype/)
	An evaluator for the Mu-language

