
Lab 5
Code generation with smart IRs

Objective

• Construct the CFG.
• Compute live ranges, construct the interference graph.
• Allocate registers and produce final code.

During the previous lab, you wrote a dummy code generator for the Mu language. In this lab the objective
is to generate a more efficient SARUMAN code. You will extend your previous code, in the same directory.
People in advance are encouraged to keep their current code, students with more difficulties will be pro-
vided a working 3 address code generation Visitor on Tuesday, 21/01/2019, 6pm.

Installations We’re going to use graphviz for visualization. If it is not already installed (e.g. on your personal
machine), install it, for instance with:

apt-get install graphviz graphviz-dev

You may have to install the following PYTHON packages:

pip3 install --user networkx
pip3 install --user graphviz
pip3 install --user pygraphviz \
--install-option="--include-path=/usr/include/graphviz" \
--install-option="--library-path=/usr/lib/graphviz/"

If the last command errors out complaining about a missing Python.h, run:

apt-get install python3-dev

and then relaunch the command pip3 install ... On the university machines, you might have to

update existing already installed packages:

pip3 install --user --upgrade networkx graphviz pygraphviz

5.1 CFG construction

In class we have presented CFGs with maximal basic blocks. In this lab we will implement CFGs with minimal
basic blocks that is CFG with one node per line of code/instruction (even comments).

EXERCISE #1 Ï CFG By hand
What are the expected result of the CFG construction from the 3-address code of Lab5 for each of these pro-
grams ?

var n,u,v:int;
n=6;
u=12;
v=n+u;
log(v);

var x,y:int;
x=2;
if (x < 4)
x=4;

else
x=5;

log(x)

var x:int;
x=0;
while (x < 4){
x=x+1;

}
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EXERCISE #2 Ï CFG Construction
The APISaruman is able to deal with CFGs. Instructions have a list of predecessors (self._in) and suc-
cessors (self._out) and a SARUMANProg contains the initial control point (self._start) from which we can
traverse the graph. This feature allows us to easily construct the CFG of a program.

We give you the construction for all idioms. Each time your Visitor creates a new SARUMAN instruction, the
CFG updates itself automatically: when adding an instruction, it creates an edge between the last instruction
(self._end) and the instruction to be added. Edit 22/1 8H : There was an issue with the student version of

APISaruman.py, the CondJUMP as well as JUMP are not working right now. This will be updated in the git
today, but a quick edit makes the job:

Listing 5.1: ’APISaruman.py’

def addInstructionCondJUMP(self, label, op1, c, op2):
[...]
# the last 3 instructions should be:

self.add_instruction(ins)
self.add_edge(ins, label)
return ins

def addInstructionJUMP(self, label):
[...]
# the last 3 instructions should be:

self.add_instruction(i, linkwithsucc=False)
self.add_edge(i, label)
return i

In this exercise, you only have to understand (look at the API!) and test the provided code.

The smart code generation called by Main.py has a second optional argument that enables it to print the
CFG as a dot file. Verify that it is the case, if not, edit and modify it:

elif reg_alloc == "smart":
prog.do_smart_alloc(basename , True) # True to print CFGs

The file is printed as <name>.dot.pdf in the same directory as the source file.

Now you can launch:

python3 Main.py --reg-alloc smart /path/to/example.mu

1. Test for lists of assignments (for instance testdataflow/df01.mu) You should see a chain of blocks.

2. Same for boolean expressions, and tests.

3. Same for while loops . . . .

4. Propose appropriate examples and draw nice pictures!

5.2 Liveness analysis and Interference graph

For the liveness analysis, we recall the notations. A variable at the left-hand side of an assignement is killed by
the block. A variable whose value is used in this block (before any assignment) is generated.

LVexi t (`) =
{
; if `= final⋃

{LVentr y (`′)|(`,`′) ∈ f low(G)}

LVentr y (`) = (
LVexi t (`)\ki l lLV (`)

)∪ g enLV (`)

The sets are initialised to ; and computed iteratively, until reaching a fixpoint.
From now on, you have to modify APISaruman.py
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EXERCISE #3 Ï Liveness Analysis, Initialisation
Initialise the Gen(B) and Kill(B) for each kind of instruction (add, let, . . . ). This corresponds to the numerous
TODOs ADD GEN KILL INIT IF REQUIRED.
We give you an example for the print instruction. Be careful to properly handle the following cases:

ADD temp1 temp1 12

and

LETI temp1 42

To test/debug this initialisation, you should uncomment the following lines inAPISaruman.py (functiondo_smart_alloc):

if debug:
self.printGenKill()

As an example, here is the expected initialisation for testsdataflow/df04.mu, obtained by:

python3 Main.py --reg-alloc smart /path/to/df04.mu

instr 0: comment
gen: {}
kill: {}

instr 1: leti temp_2 2
gen: {}
kill: {temp_2}

instr 2: let temp_1 temp_2
gen: {temp_2}
kill: {temp_1}

instr 3: comment
gen: {}
kill: {}

instr 6: leti temp_3 4
gen: {}
kill: {temp_3}

instr 8: leti temp_4 0
gen: {}
kill: {temp_4}

instr 9: cond_jump lbl_end_relational_2
temp_1 sge temp_3

gen: {temp_1,temp_3}
kill: {}

instr 10: leti temp_4 1
gen: {}
kill: {temp_4}

instr 7: lbl_end_relational_2
gen: {}

kill: {}

instr 11: cond_jump lbl_end_cond_1
temp_4 eq 0

gen: {temp_4}
kill: {}

instr 12: leti temp_5 4
gen: {}
kill: {temp_5}

instr 13: let temp_1 temp_5
gen: {temp_5}
kill: {temp_1}

instr 14: jump lbl_end_if_0
gen: {}
kill: {}

instr 5: lbl_end_cond_1
gen: {}
kill: {}

instr 15: leti temp_6 5
gen: {}
kill: {temp_6}

instr 16: let temp_1 temp_6
gen: {temp_6}
kill: {temp_1}

instr 4: lbl_end_if_0
gen: {}
kill: {}
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EXERCISE #4 Ï Liveness Analysis, fixpoint. (Only test!)

We implemented for you the fixpoint iteration as a method (doDataflow) in APISaruman.py “while it is
not finished, store the old values, do an iteration, decide if its finished”. The doDataflow program method
makes calls to do_dataflow_onestep instruction methods. The result (live in, live out sets of variables, are
stored in mapin and mapoutmember sets of the SARUMANProg class).

All you have to do in this exercice is to check that the results that are obtained with with analysis are correct
at least for the examples of the testsdataflow/ directory.

To do so, you should first uncomment these two lines (same file):

mapin, mapout = self.doDataflow()
if debug:

self.printMapInOut()

As an example, here is the expected output for testsdataflow/df04.mu: 1

In: {0: {}, 1: {}, 2: {temp_2}, 3: {temp_1}, 4: {}, 5: {},
6: {temp_1}, 7: {temp_4}, 8: {temp_3,temp_1},
9: {temp_3,temp_1,temp_4}, 10: {}, 11: {temp_4},
12: {}, 13: {temp_5}, 14: {}, 15: {}, 16: {temp_6}, 17: {}}

Out: {0: {}, 1: {temp_2}, 2: {temp_1}, 3: {temp_1}, 4: {}, 5: {},
6: {temp_3,temp_1}, 7: {temp_4}, 8: {temp_3,temp_1,temp_4},
9: {temp_4}, 10: {temp_4}, 11: {},
12: {temp_5}, 13: {}, 14: {}, 15: {temp_6}, 16: {}, 17: {}}

EXERCISE #5 Ï Interference graph
We recall that two temporaries x, y are in conflict if they are simultaneously alive after a given instruction,
which means:

• There exists a block (an instruction) b and x, y ∈ LVout (b)
• OR There exist a block b such that x ∈ LVout (b) and y is defined in the block
• OR the converse.

For the two last cases, consider the following list of instructions:

y=2
x=1
z=y+1

where x is not alive after the x=1 statement, however x is in conflict with y since we generate the code for x=1
while y is alive2.

From the result of the previous exercise, construct the interference graph (complete the doInterfGraph
function) of your program (each time a pair of temporaries are in conflict, add an edge between them). We
give you a non-oriented graph API (LibGraph.py) for that. Use the print_dotmethod and relevant tests to
validate your code.

In this exercise, we care about correctness more than complexity. It is OK to write an O(n3) algorithm (for
each t1, for each t2, for each control point c, check whether t1 and t2 have a conflict).

As an example, here is the conflict graph that should be obtained for df04.mu (uncomment some lines,
command line as usual):

1Here r 7 is the register we use to encode nop instructions, we can ignore it during the dataflow analysis (but not during code genera-
tion!)

2Another solution consists in eliminating dead code before generating the interference graph.
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5.3 Register allocation and code production

Instead of the iterative algorithm of the course, we will implement the following algorithm for k register allo-
cation 3:

• Color the interference graph with k −2 colors.
• All the other variables will be allocated on the stack. To compute the offset from the stack pointer (sp),

recolor the subgraph of remaining variables with an infinite number of colors.
Then the memory allocation:

• For non-spilled variable: replace the temporary with its associated color/register.
• For spilled variables: do the same as “all in mem” in Lab 4!
update 22/1 4pm : an element of type Register can be obtained from a given register color with the helper

function GP_REGS[coloringreg[xxx]], and for offsets you have a constructor Offset(SP, xxx). Grep is
your friend.

update 23/1 6pm : be careful with types when dealing with the graph. As the comment in APISaru-
man.py states, self._igraph contains only elements of type string, while the alloc_dict map given to
self._pool.set_reg_allocation() must have Temporary objects as keys. There is no easy way to re-
trieve a Temporary object from its name, but it is easy to get the name as a string from a Temporary: just use
str(). The easiest way to build alloc_dict is probably to iterate over all the temporaries of the program
(available in self._pool._all_temps, and for each temporary check the corresponding color to associate
it to the right register or memory location in alloc_dict.

EXERCISE #6 Ï Register Allocation
Use the algorithm (with k=8) and the coloration method of the LibGraphes class to allocate registers (or a
place in memory). For that you have to complete the program method smart_alloc. Comments will help you
design this (non trivial) function. The allocation itself is done by statement rewriting, like in previous lab. You
need to implement it in Allocations.py (it is very similar to the previous lab’s version, but you have to deal
with both memory locations and registers in the same function).

Validate your allocation on tiny well chosen test files (especially tests that augment the register pressure)
and all the benchmarks of the previous lab. We adapted the previous script for that.

On the df04.mu example, the graph coloring succeeds with:

3k = 8 this year!
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EXERCISE #7 Ï Massive tests
Comment out all the print dot instructions, debug, . . . and test on all test files you have.
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