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Lab 1
Warm-up : Python and the target machine : RISCV

Objective

• Start with Python.
• Be familiar with the RISCV instruction set.1

• Understand how it executes on the RISCV processor with the help of a simulator.
• Write simple programs, assemble, execute.

Todo in this lab:
• Play and learn Python!
• Play and learn the RISCV ISA.
• Finish at home, nothing will be evaluated in this lab.

1.1 Quick intro to Python - 1h max

This part is strongly inspired by the Project 1 of ENSL (L3).

Please use a correct text editor ! We don’t really care if it is SublimeText, Emacs, Atom or Vim, but please
use a text editor made for programming.

https://www.python.org/Official tutorial: https://docs.python.org/3/tutorial/An amazing in-
teractive one http://www.learnpython.org/en/Welcome

1.1.1 Inside the interpreter

And now, let’s get to the heart of the matter.

EXERCISE #1 Ï Launch!
Launch the Python interpreter (python3, in the terminal). Which version is it ? Use a version of Python not
older than 3.5. Quit the interpreter with CTRL-D or quit().

EXERCISE #2 Ï Strings
Try the following code:

x = 'na'
'Ba' + 2 * x

Then write "j’aime les bons bonbons" with the same technique.

Lists

EXERCISE #3 Ï Lists
Create a list li of integers containing various éléments. Replace one of the elements with a new value. At last,
use + or += to add elements at the end of the list.

EXERCISE #4 Ï Sorts
Sort a list using function sorted. What is the complexity in the worst case? In the best case? Use function
len(); same questions.

1todo lablbalbla
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Print

EXERCISE #5 Ï Formatting
Give 3 different ways of building the following character string:
"2.21 Gigawatts !! 2.21 Gigawatts !! My godness !"using one variable x = 2.21, and another vari-
able that uses str(), then the operator %, then the method .format().

1.1.2 Tiny programs

Now, write your programs in .py files (with an editor). If you get encoding issue, add this at the beginning, but
it shouldn’t be needed with Python 3:

# -*- coding: utf-8 -*-

EXERCISE #6 Ï Hello
Edit a file named hello.py with the following content:

print("Hello World")

Save, execute with: python3 hello.py.

EXERCISE #7 Ï If then else
Write a program that initializes an int value to a number given by the user (use input()) and prints a different
message according to its parity (odd/even).

EXERCISE #8 Ï While
Write a program that declares two integer values a and b, then computes and prints their pgcd.

EXERCISE #9 Ï Imperative For
Using the construction for i in ..., write a program that sums all even i from 2 to 42 (inclusive).

EXERCISE #10 Ï For expression / Lists

• Write a program that declares and initialises a list, and computes the sum of all its elements.
• Write a 1-line code that, from a list l, returns a list whose elements are the squares of the elements in l.
• Write a 1-line code that, from a list l, returns a list containing the even elements of l.l.

EXERCISE #11 Ï Dicts

1. What are the types of {}, {’a’}, {’a’, ’b’} and {’a’: ’b’}?

2. What is the following code doing (where t is a dictionary):

while key in t:
key = t[key]

print(key)

What is the problem?

3. Write a code doing the same operation but without the same drawback (i.e.: if needed, it doesn’t print
anything)

EXERCISE #12 Ï Functions

1. Declare a function fact that computes the factorial of a number.

2. What does help(fact) display? If it is not done, document your function (add a docstring).
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1.2 The RISCV processor, instruction set, simulator

EXERCISE #13 Ï Lab preparation
Clone the github repository for this year’s labs:

git clone https://github.com/lauregonnord/mif08-labs19.git

Then, follow the instructions to compile riscv-xxx-gcc and spike on your machine (see INSTALL.md file).
On the Nautibus machines, all installations have already been done for you. However, you still have to add the
following lines to your .bashrc :

RISCV=/home/tpetu/Enseignants/matthieu.moy/mif08/riscv
export PATH="$RISCV"/bin:"$PATH"
export LD_LIBRARY_PATH="$RISCV"/libexec/gcc/riscv64-unknown-elf/9.2.0:"$LD_LIBRARY_PATH"

EXERCISE #14 Ï RISCV C-compiler and simulator, first test
In the directory TP01/code/ :

• Compile the provided file ex1.c with :
riscv64-unknown-elf-gcc ex1.c -o ex1.riscv
It produces a RISCV binary.

• Execute the binary with the RISCV simulator :
spike pk ex1.riscv
This should print 42.

• The corresponding RISCV can be obtained in a more readable format by:
riscv64-unknown-elf-gcc ex1.c -S -o ex1.s -fverbose-asm
(have a look at the generated .s file!)

The objective of this sequence of labs is to design our own (subset of ) C compiler for RISCV.

EXERCISE #15 Ï Documents
Some documentation can be found in the RISCV ISA on the course webpage and in Appendix A.

https://compil-lyon.gitlabpages.inria.fr/compil-lyon/

The assembly language for this year is RISCV. We already played a bit with it in the exercise session.

1.2.1 Assembling, disassembling

EXERCISE #16 Ï Hand assembling, simulation of the hex code
Assemble by hand (on paper) the instructions :

.globl main
2 main:

addi a0, a0, 1
bne a0, a0, main

end:
ret

You will need the set of instructions of the RISCV machine and their associated opcode. All the info is in
the ISA documentation.

To check your solution (after you did the job manually), you can redo the assembly using the toolchain:

riscv64-unknown-elf-as -march=rv64g asshand.s -o asshand.o

asshand.o is an ELF file which contains both the compiled code and some metadata (you can tryhexdump asshand.o
to view its content, but it’s rather large and unreadable). The tool objdump allows extracting the code section
from the executable, and show the binary code next to its disassembled version:

riscv64-unknown-elf-objdump -d asshand.o

Check that the output is consistent with what you found manually.
From now on, we are going to write programs using an easier approach. We are going to write instructions

using the RISCV assembly.
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1.2.2 RISCV Simulator

EXERCISE #17 Ï Execution and debugging
See https://www.lowrisc.org/docs/tagged-memory-v0.1/spike/ for details on the Spike simulator.

test_print.s is a small but complete example using Risc-V assembly. It uses theprint_string, print_int,
print_char andnewline functions provided to you inlibprint.s. Each function can be called withcall print_...
and prints the content of register a0 (call newline takes no input and prints a newline character).

1. First test assembling and simulation on the file test_print.s:
riscv64-unknown-elf-as -march=rv64g test_print.s -o test_print.o

2. The libprint.s library must be assembled too:
riscv64-unknown-elf-as -march=rv64g libprint.s -o libprint.o

3. We now link these files together to get an executable:
riscv64-unknown-elf-gcc test_print.o libprint.o -o test_print
The generated test_print file should be executable, but since it uses the Risc-V ISA, we can’t execute it
natively (try ./test_print, you’ll get an error like Exec format error).

4. Run the simulator:
spike pk ./test_print
The output should look like:
bbl loader
HI MIF08!
42
a
The first line comes from the simulator itself, the next two come from the print_string, print_int
and print_char calls in the assembly code.

5. We can also view the instructions while they are executed:
spike -l pk ./test_print
Unfortunately, this shows all the instructions in pk (Proxy Kernel, a kind of mini operating system), and
is mostly unusable. Alternatively, we can run a step-by-step simulation starting from a given symbol. To
run the instructions in main, we first get the address of main in the executable:
$ riscv64-unknown-elf-nm test_print | grep main
000000000001015c T main
This means: main is a symbol defined in the .text section (T in the middle column), it is global (capital
T), and its address is 1015c. Now, run spike in debug mode (-d) and execute code up to this address
(until pc 0 1015c, i.e. “Until the program counter of core 0 reaches 1015c”). Press Return to move to
the next instruction and q to quit:
$ spike -d pk ./test_print
: until pc 0 1015c
bbl loader
:
core 0: 0x000000000001015c (0xff010113) addi sp, sp, -16
:
core 0: 0x0000000000010160 (0x00113423) sd ra, 8(sp)
:
core 0: 0x0000000000010164 (0x0001d7b7) lui a5, 0x1d
:
core 0: 0x0000000000010168 (0x02078513) addi a0, a5, 32
: q
$

Remark: For your labs, you may want to assemble and link with a single command (which can also do the
compilation if you provide .c files on the command-line):

riscv64-unknown-elf-gcc -march=rv64g libprint.s test_print.s -o main

In real-life, people run compilation+assembly and link as two different commands, but use a build system like
a Makefile to re-run only the right commands.
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EXERCISE #18 Ï Algo in RISCV assembly
Write (in minmax.s) a program in RISCV assembly that computes the min of two integers, and stores the result
in a precise location of the memory that has the label min. Try with different values. We use 32 bits of memory
to store ints, i.e., use .word directive and lw and sw instructions.

EXERCISE #19 Ï (Advanced) Algo in RISCV assembly

Write and execute the following programs in assembly:
• Count the number of non-nul bits of a given integer, print the result.
• Draw squares and triangles of stars (character ’*’) of size n, n being stored somewhere in memory.

Examples:
n=3 square:
***
***
***
n=3 triangle:
*
* *
* * *

1.2.3 Finished?

If you’re done with the lab, do the python tutorial at the following address:

https://docs.python.org/fr/3.5/tutorial/
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Lab 2
Lexing and Parsing with ANTLR4

Objective

• Understand the software architecture of ANTLR4.
• Be able to write simple grammars and correct grammar issues in ANTLR4.

Todo in this lab:
• Install and play with ANTLR.
• Implement your own grammars. This will be evaluated next lab!
• Understand and extend an arithmetic evaluator (with semantic actions).
• Understand our future test infrastructure.

EXERCISE #1 Ï Lab preparation
In the lab’s git repository(mif08-labs19)1:

git commit -a -m "my changes to LAB1" #push is not allowed
git pull

will provide you all the necessary files for this lab in TP02. You also have to install ANTLR4. For tests, we will
use pytest, you may have to install it:

pip3 install pytest --user

2.1 User install for ANTLR4 and ANTLR4 Python runtime

2.1.1 User installation

EXERCISE #2 Ï Install
To be able to use ANTLR4 for the next labs, download it and install the python runtime:

mkdir ~/lib
cd ~/lib
wget http://www.antlr.org/download/antlr-4.7.1-complete.jar
pip3 install antlr4-python3-runtime --user

Then add to your ~/.bashrc:

export CLASSPATH=".:$HOME/lib/antlr-4.7.1-complete.jar:$CLASSPATH"
export ANTLR4="java -jar $HOME/lib/antlr-4.7.1-complete.jar"
alias antlr4="java -jar $HOME/lib/antlr-4.7.1-complete.jar"
alias grun="java org.antlr.v4.gui.TestRig"

Then source your .bashrc:

source ~/.bashrc

Tests will be done in Section 2.2.2.

1if you don’t have it already, get it from https://github.com/lauregonnord/mif08-labs19.git
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2.2 Simple examples with ANTLR4

2.2.1 Structure of a .g4 file and compilation

Links to a bit of ANTLR4 syntax:

• Lexical rules (extended regular expressions): https://github.com/antlr/antlr4/blob/master/doc/
lexer-rules.md

• Parser rules (grammars)https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

The compilation of a given .g4 (for the PYTHON back-end) is done by the following command line if you
modified your .bashrc properly:

antlr4 -Dlanguage=Python3 filename.g4

If you did not define the alias or if you installed the .jar file to another location, you may also use:

java -jar /path/to/antlr-4.7-complete.jar -Dlanguage=Python3 filename.g4

(note: antlr4, not antlr which may also exists but is not the one we want)

2.2.2 Up to you!

EXERCISE #3 Ï Demo files
Work your way through the three examples (open them in your favorite editor!) in the directory demo_files:

ex1 with ANTLR4 + Java: A very simple lexical analysis2 for simple arithmetic expressions of the form x+3.
To compile, run:

antlr4 Example1.g4
javac *.java

This generates Java code and then compiles them. You can finally execute using the Java runtime with:

grun Example1 tokens -tokens

To signal the program you have finished entering the input, use Control-D (you may need to press it twice).
Examples of run: [ˆD means that I pressed Control-D]. What I typed is in boldface.

1+1
^D^D
[@0,0:0=’1’,<DIGIT>,1:0]
[@1,1:1=’+’,<OP>,1:1]
[@2,2:2=’1’,<DIGIT>,1:2]
[@3,4:3=’<EOF>’,<EOF>,2:0]
)+
^D^D
line 1:0 token recognition error at: ’)’
[@0,1:1=’+’,<OP>,1:1]
[@1,3:2=’<EOF>’,<EOF>,2:0]
%

Questions:
• Read and understand the code.
• Allow for parentheses to appear in the expressions.
• What is an example of a recognized expression that looks odd? To fix this problem we need a syntactic

analyzer (see later).

2Lexer Grammar in ANTLR4 jargon
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ex1b: same with a PYTHON file driver:

antlr4 -Dlanguage=Python3 Example1b.g4
python3 main.py

test the same expressions. Observe the PYTHON file.
From now on you can alternatively use the commands make and make run instead of calling antlr4 and

python3.

ex2: Now we write a grammar for valid expressions. Observe how we recover information from the lexing
phase (for ID, the associated text is $ID.text$). The grammar includes Python code and therefore works only
with the PYTHON driver.

If these files read like a novel, go on with the other exercises. Otherwise, make sure that you understand
what is going on. You can ask the Teaching Assistant, or another student, for advice.

From now you will write your own grammars. Be careful the ANTLR4 syntax use unusual conventions:
“Parser rules start with a lowercase letter and lexer rules with an upper case.”a

ahttp://stackoverflow.com/questions/11118539/antlr-combination-of-tokens

EXERCISE #4 Ï Well-founded parenthesis
Write a grammar and files to make an analyser that:

• skips all characters but ’(’, ’)’, ’[’, ’]’ (use the parser rule CHARS: ~[()[\]] -> skip ; for it)

• accepts well-formed parenthesis.

Thus your analyser will accept “(hop)” or “[()](tagada)” but reject “plop]” or “[)”. Test it on well-chosen
examples. Begin with a proper copy of ex2, change the name of the files, name of the grammar, do not forget the
main and the Makefile, and THEN, change the grammar to answer the exercise.

This is the kind of exercise that will be graded at the beginning of Lab 3.

EXERCISE #5 Ï Another grammar
Write a grammar that accepts the language {anb2n}. Letters other than a and b, and spaces are ignored, other
symbols are rejected by the lexer.

Important remark From now on, we will use Python at the right-hand side of the rules. As Python is sensitive
to indentation, there might be some issues when writing on several lines. You can often avoid the problem by
defining a function in the Python header and then call it in the right-hand side of the rules.

2.3 Grammar Attributes (actions)

Until now, our analyzers are passive oracles, ie language recognizers. Moving towards a “real compiler”, a next
step is to execute code during the analysis, using this code to produce an intermediate representation of the
recognized program, typically ASTs. This representation can then be used to generate code or perform pro-
gram analysis (see next labs). This is what attribute grammars are made for. We associate to each production
a piece of code that will be executed each time the production will be reduced. This piece of code is called
semantic action and computes attributes of non-terminals.

This exercice is a demo - no grade will be given We consider a simple grammar of non empty lists of
arithmetic expressions:

S → Z+
Z → E ;

E → E +E

E → E ∗E

E → F

F → i nt

F → (E)
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The object of the demo is to understand how semantic action work, and also to play with the test infrastructure
we will use in the next labs.

EXERCISE #6 Ï Test the provided code (ariteval/ directory)
To test the provided code, just type:

1. Type

make ; python3 arit1.py testfiles/test01.txt

This should print:

1+2 = 3

on the standard output.

2. Type:

make tests

This should print:

test_ariteval.py::TestEVAL::test_expect[./testfiles/test01.txt] PASSED [ 50%]
test_ariteval.py::TestEVAL::test_expect[./testfiles/test02.txt] PASSED [100%]

EXERCISE #7 Ï Understand the test infrastructure
We saw in the previous exercice an example for test run. In the repository, we provide you a script that enables
you to test your code. For the moment it only tests files of the form testfiles/test*.txt. Just type:

make tests

and your code will be tested on these files.
To test on other tests files, you may have to open the test_ariteval.py and change some paths.

We will use the same exact script to test your code in the next labs (but with our own test cases!).

A given test has the following behavior: if the pragma // EXPECTED is present in the file, it compares
the actual output with the list of expected values (see testfiles/test01.txt for instance). There is also a
special case for errors, with the pragma // EXITCODE n, that also checks the (non zero) return code n if there
has been an error followed by an exit.

EXERCISE #8 Ï Write tests
Write tests.

EXERCISE #9 Ï Optional
Implement binary and unary minus. Test.
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Lab 3
Interpreters and Types

Objective

• Understand visitors.
• Implement typers, interpreters as visitors.

EXERCISE #1 Ï Lab preparation
In the mif08-labs19 directory:
git pull
will provide you all the necessary files for this lab in TP03. ANTLR4 and pytest should be installed and
working like in Lab 2, if not :
pip3 install --user pytest
The testsuite also uses pytest-cov, to be installed with1:
pip3 install --user pytest-cov
pip3 install --user --upgrade coverage

3.1 Demo: Implicit tree walking using Visitors

3.1.1 Interpret (evaluate) arithmetic expressions with visitors

In the previous lab, we used an “attribute grammar” to evaluate arithmetic expressions during parsing. Today,
we are going to let ANTLR build the syntax tree entirely, and then traverse this tree using the Visitor design
pattern2. A visitor is a way to seperate algorithms from the data structure they apply to. For every possible
type of node in your AST, a visitor will implement a function that will apply to nodes of this type.

EXERCISE #2 Ï Demo: arithmetic expression interpreter (arith-visitor/)
Observe and play with the Arit.g4 grammar and its PYTHON Visitor :
$ make ; make run < myexample
Note that unlike the “attribute grammar” version that we used previously, the .g4 file does not contain Python
code at all.

Have a look at the AritVisitor.py, which is automatically generated by ANTLR4: it provides an abstract
visitor whose methods do nothing except a recursive call on children. Have a look at the MyAritVisitor.py
file, observe how we override the methods to implement the interpret, and use print instructions to observe
how the visitor actually work (print some node contents).

Also note the #blabla pragmas after each rules in the g4 file. They are here to provide ANTLR4 a name
for each alternative in grammar rules. These names are used in the visitor classes, as method names that get
called when the associated rule is found (eg. #foo will get visitFoo(ctx) to be called).

We depict the relationship between visitors’ classes in Figure 3.1.

1The second line is not always needed but may solve compatibility issues between versions of pytest-cov and coverage, yielding
pytest-cov: Failed to setup subprocess coverage messages in some situations.

2https://en.wikipedia.org/wiki/Visitor_pattern
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Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 3.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTree visitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particular type (here Multiplication). This process is depicted by the red cycle.

A last remark: when a ANTLR4 rule contains an operator alternative such as:

| expr pmop=(PLUS | MINUS) expr #additiveExpr

you can use the following code to match the operator:

if ( ctx.pmop.type == AritParser.PLUS):
...

The objective is now to use visitors, to type and interpret MiniC programs, whose syntax is depicted in Fig-
ure 3.2.

EXERCISE #3 Ï Be prepared!
In the directory MiniC-type-interpret/, you will find:

• The MiniC grammar (MiniC.g4).
• A Main.py that parses the command line, does the lexical analysis and syntax analysis of the input file,

then launches the Typing visitor, and if the file is well typed, launches the Interpreter visitor.
• One complete visitor: MiniCTypingVisitor.py, and one to be completed: MiniCInterpretVisitor.py.
• Some test cases, and a test infrastructure.
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grammar MiniC;

prog: function* EOF #progRule;

// For now, we don't have "real" functions, just the main() function
// that is the main program, with a hardcoded profile and final
// 'return 0'.
function: INTTYPE ID OPAR CPAR OBRACE vardecl_l block

RETURN INT SCOL CBRACE #funcDecl;

vardecl_l: vardecl* #varDeclList;

vardecl: typee id_l SCOL #varDecl;

id_l
: ID #idListBase
| ID COM id_l #idList
;

block: stat* #statList;

stat
: assignment SCOL
| if_stat
| while_stat
| print_stat
;

assignment: ID ASSIGN expr #assignStat;

if_stat: IF condition_block (ELSE IF condition_block)* (ELSE stat_block)? #ifStat;

condition_block: OPAR expr CPAR stat_block #condBlock;

stat_block
: OBRACE block CBRACE
| stat
;

while_stat: WHILE OPAR expr CPAR stat_block #whileStat;

print_stat

Figure 3.2: MiniC syntax. We omitted here the subgrammar for expressions

3.2 Typing the MiniC-language (MiniC-type-interpret/)

The informal typing rules for the MiniC language are:
• Variables must be declared before being used, and can be declared only once ;
• Binary operations (+, -, *, ==, !=, <=, &&, ||, . . . ) require both arguments to be of the same type (e.g.
1 + 2.0 is rejected) ;

• Boolean and integers are incompatible types (e.g. while(1) is rejected) ;
• Binary arithmetic operators return the same type as their operands (e.g. 2. + 3. is a float, 1 / 2 is the

integer division) ;
• + is accepted on string (it is the concatenation operator), no other arithmetic operator is allowed for

string ;
• Comparison operators (==, <=, . . . ) and logic operators (&&, ||) return a Boolean ;
• == and != accept any type as operands ;
• Other comparison operators (<, >=, . . . ) accept int and float operands only.
For now, we do not consider real functions, so all your test cases will contain only a main function, with-

out argument and returning an integer. We will extend your code and write test-cases with several function
definitions and calls in a further lab.

EXERCISE #4 Ï Demo: play with the Typing visitor
We provide you the code of the Typer for the MiniC-language, whose objective is to implement the Typing rules
of the course. Open and observe MiniCTypingVisitor.py, and predict its behavior on the following MiniC
file:
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int x;
x="blablabla";
Then, test with:
make run TESTFILE=ex-types/bad_type00.c
Observe the behavior of the visitor on all test files in ex-types/. How do we handle:

• Multiplicative expressions with int and string operands ?
• Assignements to a variable which is not of the same type as the expression ?
• The variable type declarations ?

EXERCISE #5 Ï Demo: test infrastructure for bad-typed programs
On bad typed programs, what we expect from a good test infrastructure is that is is capable of checking if we
handled properly the case. This is solved by augmenting the pragma syntax of the previous lab: for instance:
int x;
x="blablabla";
// EXPECTED
// In function main: Line 5 col 2: type mismatch for x: integer and string
// EXITCODE 2
will be a successful unit test. Any error (typing or runtime) must raise the exit code 1. Now, type:
make tests
and observe (Typing tests are those concerning files in ex-types/). If you get an error about the --cov argu-
ment, you didn’t properly install pytest-cov. To allow compiling your MiniC programs with a regular C com-
piler, a printlib.h file is provided, and should be #included in all your MiniC test cases.

The exit code of the interpreter should be:
• 1 in case of runtime error (e.g. division by 0, absence of main function)
• 2 in case of typing error
• 3 in case of syntax error
• 4 in case of internal error (i.e. error that should never happen except during debugging)
• And obviously, 0 if the program is typechecked and executed without error.

3.3 An interpreter for the MiniC-language

The semantics of the MiniC language (how to evaluate a given MiniC program) is defined by induction on the
syntax. You already saw how to evaluate a given expression, this is depicted in Figure 3.3.

c (literal)
return int(c) or float(c)

x (variable)
find value in dictionary and return it

e1+e2
let v1 = e1.visit() and v2 = e2.visit() in

return v1+V2

true return true

e1 < e2
return e1.visit()<e2.visit()

Figure 3.3: Interpretation (Evaluation) of expressions

EXERCISE #6 Ï Interpreter rules (on paper)
First fill the empty cells in Figure 3.4, then ask your teaching assistant to correct them.
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x := e
let v = e.visit() in

store(x,v) #update the value in dict

print_int(e)
let v = e.visit() in

print(v) #python print

S1; S2
s1.visit()
s2.visit()

if b then S1 else S2

while b do S done

Figure 3.4: Interpretation for Statements

EXERCISE #7 Ï Interpreter
Now you have to implement the interpreter of the MiniC-language. We give you the structure of the code and
the implementation for numerical expressions and boolean expressions (except modulo!) For now, you can
reason in terms of “well-typed programs”.

Type:
make run TESTFILE=’ex/testxx.c’
and the interpreter will be run on ex/testxx.c (or on ex/test00.c if you do not specify variable TESTFILE).
On the particular example ex/test00.c observe how integer values, strings, boolean, floats values are
printed.

You still have to implement (in MiniCInterpretVisitor.py):

1. The modulo version of Multiplicative expressions.

2. Variable declarations (varDecl) and variable use (idAtom): your interpreter should use a table (dict in
PYTHON) to store variable definitions and check if variables are correctly defined and initialized. Do not
forget to initialize dict with the special value None for all variable declarations. Refer to the three test
files ex/bad_defxx.c for the expected error messages.

3. Statements: assignments, conditional blocks, tests, loops.
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Error codes The exit code of the interpreter should be:

• 1 in case of runtime error (e.g. division by 0, absence of main function)

• 2 in case of typing error

• 3 in case of syntax error

• 4 in case of internal error (i.e. error that should never happen except during debugging)

• And obviously, 0 if the program is typechecked and executed without error.

EXERCISE #8 Ï Unit tests
Test with make tests and appropriate test-suite. If you get an error about the --cov argument, you didn’t
properly install pytest-cov. You must provide your own tests. The only outputs are the one from the println_*
function or the following error messages: “m has no value yet!” (or possibly “Undefined variable m”,
but this error should never happen if your typechecker did its job properly) where m is the name of the variable.
In case the program has no main function, the typechecker accepts the program, but it cannot be executed,
hence the interpreter raises a “No main function in file” error. To properly test the ex/bad_def* files,
you will have to edit the python test script test_interpreter.py.

Test Infrastructure Tests work mostly as in the previous lab, with // EXPECTED and // EXITCODE n prag-
mas in the tests (be careful, it’s now // for the comments, not #).

For instance, if you fail test00.c because you printed 42 instead of 99.00, you will get this error:
_____________ TestCodeGen.test_expect[ex/test00.c] _____________

self = <test_interpreter.TestCodeGen object at 0x7f0e0aa369b0>
filename = ’ex/test00.c’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_expect(self, filename):

expect = self.extract_expect(filename)
eval = self.evaluate(filename)
if expect:

> assert(expect == eval)
E assert ’99.00\n1\n’ == ’42\n1\n’
E - 99.00
E + 42
E 1

test_interpreter.py:59: AssertionError
And if you did not print anything at all when 99.00 was expected, the last lines would be this instead:

if expect:
> assert(expect == eval)
E assert ’99.00\n1\n’ == ’1\n’
E - 99.00
E 1

test_interpreter.py:59: AssertionError

EXERCISE #9 Ï Archive
The interpreter (all exercises in Section 3.3) is due on TOMUSS on Friday, 17/01/2020 right after the demo
(5pm). Type make tar to obtain the archive to send (change your name in the Makefile before!). Your
archive must also contain tests (Tests should be in ex/ and ex-types/).) and a README.mdwith your name,
the functionality of the code, how to use it, your design choices, and known bugs, tests (There is an example
in TP02/ariteval.
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Lab 4
Syntax-Directed Code Generation

Objective

During the previous lab, you have written your own interpreter of the MiniC language. In this lab the objective
is to generate valid RISCV codes from MiniC programs:

• Generate 3-address code for the MiniC language.
• Generate executable “dummy” RISCV from programs in MiniC via two simple allocation algorithms.
• Please follow instructions and COMMENT YOUR CODE!

Student files are in the Git repository.

You may have to install some additional Python libs:
pip3 install networkx graphviz --user

And on your personal machines:
apt-get install graphviz-dev

4.1 Preliminaries

This section must be carefully read.

Important remark From now on, we add some restrictions to the MiniC language:
• Values (variables, argument of println_int) are of type (signed) int or bool only (no float, no string,

no char). Thus all values can be stored in regular registers or in one cell (64 bits) in memory. You can let
your program crash if another type of variable is provided.

Note that real compilers would perform the code generation from a decorated AST (with type annotations
attached to nodes). For simplicity, we will work on the non-decorated AST: our language is simple enough to
generate code without decorations.

Structure of the compiler’s code

• In APIRiscV.py we provide you with utility functions to encode 3-address RISCV instructions. Instruc-
tion classes are in Instruction3A.py and Operands.py. An Instruction is either a Comment, a Label,
or a Instru3A; it has arguments which can be immediate numbers (of type Immediate), temporaries
(of type Temporary), regular registers (Register 1), offsets in memory (Offset).

• A RISCV program contains a list of instructions, and also a temporary pool (temporary variables).

• In Section 4.2, you will use an instance of the RiscVFunction class in order to construct a list of such
instructions via calls to addInstructionXXX methods. A call to the printCode method will dump this
code into a text file.

• File Allocations.py is responsible for the allocation part. From a RiscVFunction with temporaries
(instructions formed with temporaries), producing an actual RISCV program (instructions with regular
registers or memory accesses) is done by the two following steps:

– First, compute an allocation for each temporary (in the current RiscVFunction instance). In Sec-
tion 4.3, we provide you with NaiveAllocator.run() in Allocations.py which computes such
a (naive) allocation, you will have to design your own allocation function in Section 4.4.

1in the library, registers are in capital letters, but in lowercase when they are printed.
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– For each instruction of the program, if the instruction contains a read or write access to a tempo-
rary, replace operands with the corresponding actual registers/memory location (and possibly add
some instructions before and after). This is done by the use of theRiscVFunction.iter_instructions
iterator on instructions and Allocations.replace_reg methods. In Section 4.4 you will have to
write such a “replacement” function.

• The file MiniCTypingVisitor.py is the same as the skeleton provided for lab3. You can copy your lab3’s
MiniCTypingVisitor.py, and if your typechecker is buggy, you can use the compiler’s--disable-typecheck
to run the code generation without typechecking (it is activated in the Makefile when you run make
run, this may be changed by setting DISABLE_TYPECHECK in test_codegen.py).

• The file Main.py launches the chain: production of 3-address code with temporaries, allocation, re-
placement, print.

• The script test_codegen.py will help you to test your code. We will use it in Section 4.3.

• A README.md file to be completed progressively during the lab.

EXERCISE #1 Ï RISCV Simulator - test
Re-test the command-line version of the RISCV simulator:
riscv64-unknown-elf-gcc toto.s xxx.s -o toto.riscv
spike pk toto.riscv

4.1.1 Conventions used in the assembly code

• All data items are stored on 64 bits (double-words, 8 bytes)

• Registers s1, s2, and s3 are reserved for temporary computations (e.g. to compute an address before a
sd or a ld, or to store a value between a memory access and an arithmetic operation). Note that s0 is an
alias for fp, hence s0 must not be used as a general purpose register either.

• Registers s4, ..., s11, t0, ..., t6 are general purpose registers, that can be used freely by the code genera-
tor. In your Python code, you can access the list of general-purpose registers with Operands.GP_REGS.
si and ti registers will behave differently in presence of function calls, but are considered equivalent
for now.

• To store properly in memory, it is mandatory to compute offsets from the “reserved” register fp. To be
compatible with the RISCV ecosystem, we will use a stack growing with decreasing addresses. Thus
data in the stack is accessed by adding a negative offset (multiple of 8) to fp. The sp register points to
the first data contained in the stack. It is always 16-byte (2 double-words) aligned.

4.2 First step: three-address code generation

In this section you have to implement the course rules (Figures 4.2 and 4.3) in order to produce RISCV code
with temporaries.

Here is an example of the expected output of this part. From the following MiniC program:
#include "printlib.h"

int main() {
int a,n;

n = 1;
a = 7;
while (n < a) {
n = n+1;

}
println_int(n);
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return 0;
}
the following code is supposed to be generated:

1 ##Automatically generated RISCV code, MIF08 & CAP 2019
##non executable 3-Address instructions version

##prelude
# [...] Some automatically generated code that will be explained in a future lab

6

##Generated Code
# [...] Some automatically generated code that will be explained in a future lab

# (stat (assignment n = (expr (atom 1)) ;))
li temp_2, 1

11 mv temp_0, temp_2
# (stat (assignment a = (expr (atom 7)) ;))
li temp_3, 7
mv temp_1, temp_3
# (stat (while_stat while ( (expr (expr (atom n)) < (expr (atom a))) ) (

stat_block { (block (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1)))
;))) })))

16 lbl_l_while_begin_0:
li temp_4, 0
bge temp_0, temp_1, lbl_end_relational_1
li temp_4, 1

lbl_end_relational_1:
21 beq temp_4, zero, lbl_l_while_end_0

# (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1))) ;))
li temp_5, 1
add temp_6, temp_0, temp_5
mv temp_0, temp_6

26 j lbl_l_while_begin_0
lbl_l_while_end_0:

# (stat (print_stat println_int ( (expr (atom n)) ) ;))
mv a0, temp_0
call println_int

31 # [...] Some automatically generated code that will be explained in a future lab

##postlude

# [...] Some automatically generated code that will be explained in a future lab

EXERCISE #2 Ï 3-address code generation
In the archive, we provide you a main and an incomplete MiniCCodeGen3AVisitor.py. To test it, type
make TESTFILE=tests/step1/test00.c
and observe the generated code in <samepath>/test00.s2. You now have to implement the 3-address code
generation rules seen in the course. Code and test incrementally 3:

• We give you the code generation for the println_int instruction. It basically produces a call to the
proper function in the library.

• numerical expressions without variables (constants are expected to hold on 64 bits, no boolean expres-
sion for the moment!).

• then (numerical) expressions with variables (assignment is given); we advise you to postpone the imple-
mentation of MultiplicativeExpr, and first finish this Lab without them.

2We generated RISCV comments with MiniC statements for debug.
3Using files in the TP04/tests/* directories. All the test files you use will have to be in your archive.
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At this step, the code generation is not finished, but we will do some allocation to be able to test properly.
All examples in tests/step1 directory should generate code without any error at this point:
for i in tests/step1/*.c; do echo "file="$i; python3 Main.py --reg-alloc=none $i > /dev/null; done

4.3 Testing with the trivial allocator (and real RISCV instructions), then end of

3@ code generation

The former code is not executable since it uses temporaries. We provide you with an allocation method which
allocates temporaries in registers as long as possible, and fails if there is no available registers. The process
takes as input the former 3-address code and transforms each instruction according to the allocation function.

EXERCISE #3 Ï Testing the trivial allocator
Open, read, understand the NaiveAllocator implementation in Allocations.py and how it is used to per-
form the actual RISCV code generation 4. Then, intensively test your former code generation with this alloca-
tor 5:

1. Have a look at the test_codegen.py script: comment or uncomment files to test, and what to test.
2. Test with:

make TEST_FILES=’tests/step1/*.c’ tests-naive
This script tests all files specified in TEST_FILES (or, if not specified, all files in the tests*/* directories
except those whose name start with a special character):

• if the pragma // EXPECTED is present in the file, it compares the actual output after assembling
and simulating with the list of expected values. For instance:

int main(){
int x, y;
x = 42;
println_int(x);
y = x + 8;
println_int(y);
return 0;

}
// EXPECTED
// 42
// 50

is a great test case to test assignments.

• If the AllocationError exception is raised by the naive allocator, the test is skipped.

• If the compilation succeeded, it compares the actual output after assembling and simulating to the
// EXPECTED statements given in the file (which are themselves compared to the output given by
riscv64-unknown-elf-gcc).

• For debugging, you can obviously launch your compiler manually with e.g.
python3 Main.py --reg-alloc naive --stdout tests/step1/test00.c

Run python3 Main.py --help or see Main.py for more options. The --debug option allows get-
ting some debug output. Alternatively, you can run the testsuite on a single testfile with:
make TEST_FILES=tests/step1/test00.c tests-naive

At this step, the tests should be OK or SKIPPED for all files given in directory tests/step1/:
make tests
[...]
============================= xx passed, xx skipped in xx seconds ========
“skipped” here means that we cannot compare the output to the ideal output since some of our 3 adress-codes
cannot be allocated with registers only. That’s life !

Now that we have a way to test our code generation for tiny MiniC codes, we can come back to it.

4All available registers are in a list named GP_REGS
5Be careful, this allocator crashes if there is more than a certain number of temporaries!
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EXERCISE #4 Ï End of 3-address code generation for MiniC
Implement the 3-address code generation rules:

• for boolean expressions and numerical comparison: compute 1 (true) or 0 (false) in the destination
register; be careful the not boolean instruction is not what you want.

• while loops;
• if then else. Be careful with nested ifs and their labels!.

At this point all the tests should be ok for all files in directory tests/step2/ (You should modify the test
script pathes). However these tests are not sufficient, you should add some other ones (in the directory
tests/mine/). Run the testsuite with make tests-naive to use all the test files.

About if and while For tests (and boolean expressions), make sure you generate “conditional jumps” with:

self._prog.addInstructionCondJUMP(label, op1, cond, op2)

where op1 (resp op2) is the left operand (resp right operand or the numerical constant 0, nothing else), ie a
register or a value of the boolean condition (Condition(’eq’) for equality, for instance) 6, and label is a
label to jump to if the condition evaluates to true.

About nested if-then-else (a bit more difficult) There is an issue with nested ifs. Indeed, how can we re-
member where to jump after one CondBlock (in visitCondBlock(self, ctx))? We propose to use a label
stack called self.ctx_stack: each time we enter visitIfStat, we push the end label. This label is used in
all visitCondBlock (at some point you have to insert a jump instruction to the cond_if label). At the end of
the visitIfStat function this label is popped out.

4.4 RISCV code with “all-in-mem” allocation of temporaries

Tests Up to now, you used make tests-naive to test your code, and at this point all tests should pass. From
now, you should use the more complete make tests-notsmart command, that tests everything except the
smart allocator (that we’ll write during the next lab).

Check that make tests-notsmart does fail.

Implementation As the number of registers for allocation is bounded by N 7, the naive allocator cannot deal
with more than N temporaries: we have to find a way to store the results elsewhere. In this particular lab, we
will use the following solution:

• the generated code will use memory locations in the stack, and will not use registers a1 to a7 at all for
the moment.

• but all values that are propagated from one rule to another (sub-expressions, . . . ) must be stored in the
stack, whose address will be stored in F P (as defined in RiscVFunction.printCode).

• s1, s2, s3 will be used to compute the value to store or as a destination register for the value(s) to read.
Technically, only 2 of these registers are mandatory, but you should be precautionous if you try a 2-
registers-only solution.

• In order to know if a given (temporary) operand should be read and/or written, use the is_read_ony
method of the Instruction3A class.

Figure 4.1 depicts the stack implementation for the RISCV machine, that follows the RISC-V calling convention
(stack growing downwards, stack-pointer always 16-bytes aligned).

Following the convention that fp always stores the “begining of stack address”, pushing the content of
register s3 in the stack at will be done following the steps:

• compute a new offset (call to the new_offset method of the class RiscVFunction).
• generate the following instruction 8

6We suggest to use grep and find this class definition and this method somewhere in the code we provide.
7The size of the GP_REGS list in the Operands.py file, i.e. len(Operands.GP_REGS)
8The first version of the codegen course had some errors: you should store 64 bits words, thus use sd and not sw. Refresh the

webpage to get the new version of the slides.
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x0000

x3000ins1

ins2

x3000pc

xFFFF

x0

x1

fp

growing stack

x60FE

(0)fp

(−8)fp

(−16)fp

Figure 4.1: Memory model for RISCV

sd s3, -offset*8(fp)
# sd = store double = 64-bits store
# -offset*8(fp) = memory location at address fp-offset*8

Getting back the value is similar.

EXERCISE #5 Ï Manual translation
Complete the expected output for the following two statements (13/15 lines of RISCV code). temp_3 is located
at -16(fp) and temp_4 is located at -32(fp):
int x, y;
x=4;
y=12+x

Listing 4.1: ’all in mem alloc for test00b.c’

##Generated code without prelude and postlude
2 # (stat (assignment x = (expr (atom 4)) ;))

# li temp_2, 4
li s3, 4
sd s3, -48(fp)
# end li temp_2, 4

7 # mv temp_1, temp_2
ld s2, -48(fp)
mv s3, s2
sd s3, -24(fp)
# end mv temp_1, temp_2

12 # (stat (assignment y = (expr (expr (atom 12)) + (expr (atom x))) ;))
# li temp_3, 12
# TODO 2 lines

17

# end li temp_3, 12
# add temp_4, temp_3, temp_1
# TODO 4 lines
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22

# end add temp_4, temp_3, temp_1
27 # mv temp_0, temp_4

# NOT TODO

EXERCISE #6 Ï Implement
Now you are on your own to implement this code generation. Here are the main steps (less than 50 locs of
PYTHON):

1. We have implemented for you anAllInMemAllocator.run()method inAllocations.py. This method
only maps each temporary (“temporary”) to a new offset in memory (in a PYTHON dict), then iterates
the replace_mem function on all instructions of the three adress program to perform the actual alloca-
tion.

2. In Allocations.py, implement a replace_mem(old_i) that takes as input a “3-address with tempo-
raries” RISCV code and outputs a list of instructions as a replacement. For instance, each time we access
a source operand, we have to load it from memory before, thus the replace_mem should contain some-
thing like

# regxxx is the register used to hold the value between the load and
# the operation itself (one of t0, t1, t2).
# operand is the place in memory where the temporary is allocated (of
# the form Offset(..., fp), obtained with get_alloced_loc().
before.append(Instru3A('ld', regxxx , operand))

The files you generate have to be tested with the RISCV simulator with the same script as before. Of course,
with “all-in-mem” allocation, there should not be any “skipped” test any more.

More tests Now that your compiler can deal with a large number of temporaries, make sure all features are
heavily tested (the testsuite we provide is in no way sufficient).

4.5 Multiplicative Expressions (multiplication, division, modulo)

If not already done, extend your work to multiplicative expressions. Conventions for division and multiplica-
tion should be the same as in C: division is truncated toward zero, and modulo is such that (a/b)∗b+a%b = a.

4/3 = 1 4%3 = 1
(−4)/3 = −1 (−4)%3 = −1
4/(−3) = −1 4%(−3) = 1

(−4)/(−3) = 1 (−4)%(−3) = −1

EXERCISE #7 Ï Tests, TOMUSS
We provide you the same test infrastructure as in Lab 3. Same instructions as the former lab for the archive de-
posit on Tomuss. Please to not modify the Makefile, nor the Grammar, nor the code filenames, its structure.
Deadline is January, 21/01 6pm.
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c
dr <-newTemp()
code.add(InstructionLI(dr, c))
return dr

x
#get the place associated to x.
regval<-getTemp(x)
return regval

e1+e2
t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionADD(dr, t1, t2))
return dr

e1-e2
t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionSUB(dr, t1, t2))
return dr

true
dr <-newTemp()
code.add(InstructionLI(dr, 1))
return dr

e1 < e2
dr <- newTemp()
t1 <- GenCodeExpr(e1)
t2 <- GenCodeExpr(e2)
endrel <- newLabel()
code.add(InstructionLI(dr, 0))
#if t1>=t2 jump to endrel
code.add(InstructionCondJUMP(endrel, t1, ’>=’ , t2)
code.add(InstructionLI(dr, 1))
code.addLabel(endrel)
return dr

Figure 4.2: 3@ Code generation for numerical or Boolean expressions (t1 and t2 are already defined)

Laure Gonnord, Matthieu Moy, et al. 26/40



Faculté des Sciences Lyon1, Département Informatique, M1 MIF08 Lab #4 – 2019/20

x = e
dr <- GenCodeExpr(e)

#a code to compute e has been generated
find loc the location for var x
code.add(instructionMV(loc,dr))

S1; S2
#concat codes

GenCodeSmt(S1)
GenCodeSmt(S2)

if b then S1 else S2
lelse,lendif <-newLabels()
t1 <- GenCodeExpr(b)
#if the condition is false, jump to else
code.add(InstructionCondJUMP(lelse, t1, "=", 0))
GenCodeSmt(S1) #then
code.add(InstructionJUMP(lendif))
code.addLabel(lelse)
GenCodeSmt(S2) #else
code.addLabel(lendif)

while b do S done
ltest,lendwhile <-newLabels()
code.addLabel(ltest)
t1 <- GenCodeExpr(b)
code.add(InstructionCondJUMP(lendwhile, t1, "=", 0))
GenCodeSmt(S) #execute S
code.add(InstructionJUMP(ltest)) #and jump to the test
code.addLabel(lendwhile) #else it is done.

Figure 4.3: 3@ Code generation for Statements
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Lab 5
Code generation with smart IRs

Objective

• Construct the CFG.
• Compute live ranges, construct the interference graph.
• Allocate registers and produce final “smart” code.

During the previous lab, you wrote a dummy code generator for the MiniC language. In this lab the ob-
jective is to generate a more efficient RISCV code. We recall you that you have slides in the course to help
you.

In the code we give you, there is a mention of for loops, and other string treatments, this is an error this
code should not have been given to you (and you do not have to implement these todo). We appologize for
this inconvience.

You will extend your previous code, in the same directory. People in advance are encouraged to keep
their current code, students with more difficulties will be provided a working 3 address code generation
Visitor named MiniCCodegen3AVisitor-correct.py on Tuesday, 21, end of day. Your work is due on To-
muss at the end of the week.

Installations We are going to use graphviz for visualization. If it is not already installed (e.g. on your personal
machine), install it, for instance with:

apt-get install graphviz graphviz-dev

You may have to install the following PYTHON packages:

pip3 install --user networkx
pip3 install --user graphviz
pip3 install --user pygraphviz \
--install-option="--include-path=/usr/include/graphviz" \
--install-option="--library-path=/usr/lib/graphviz/"

If the last command errors out complaining about a missing Python.h, run:

apt-get install python3-dev

and then relaunch the command pip3 install ... On the university machines, you might have to

update existing already installed packages:
pip3 install --user --upgrade networkx graphviz pygraphviz

5.1 CFG construction

In class we have presented CFGs with maximal basic blocks. In this lab we will implement CFGs with minimal
basic blocks that is CFG with one node per line of code/instruction (even comments).

EXERCISE #1 Ï CFG By hand
What are the expected result of the CFG construction from the 3-address code of Lab5 for each of these pro-
grams ?
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int n,u,v;
n=6;
u=12;
v=n+u;
print_int(v);

int x;
x=2;
if (x < 4)

x=4;
else

x=5;
print_int(x)

int x;
x=0;
while (x < 4){

x=x+1;
}

EXERCISE #2 Ï CFG Construction
The APIRiscV is able to deal with CFGs. Instructions have a list of predecessors (self._in) and succes-
sors (self._out) and a RiscVFunction contains the initial control point (self._start) from which we can
traverse the graph. This feature allows us to easily construct the CFG of a program.

We give you the construction for all idioms. Each time your Visitor creates a new RISCV instruction, the
CFG updates itself automatically: when adding an instruction, it creates an edge between the last instruction
(self._end) and the instruction to be added.

In this exercise, you only have to understand (look at the API!) and test the provided code.

When ran with --graphs, Main.py prints the CFG as a PDF file (using the tool “dot”). The file is printed as
<name>.dot.pdf in the same directory as the source file and opened automatically.

Now you can launch:
python3 Main.py --reg-alloc smart --graphs /path/to/example.c

1. Test for lists of assignments (for instance testdataflow/df01.c) You should see a chain of blocks.

2. Same for boolean expressions, and tests.

3. Same for while loops . . . .

4. Propose appropriate examples and draw nice pictures!

5.2 Liveness analysis and Interference graph

For the liveness analysis, we recall the notations. A variable at the left-hand side of an assignement is killed by
the block. A variable whose value is used in this block (before any assignment) is generated.

LVexi t (`) =
{
; if `= final⋃

{LVentr y (`′)|(`,`′) ∈ f low(G)}

LVentr y (`) = (
LVexi t (`)\ki l lLV (`)

)∪ g enLV (`)

The sets are initialised to ; and computed iteratively, until reaching a fixpoint.
From now on, you have to modify Allocations.py

EXERCISE #3 Ï Liveness Analysis, Initialisation
Initialise the Gen(B) and Kill(B) for each kind of instruction (add, let, . . . ). This is done by the set_gen_kill
method of SmartAllocator. Be careful to properly handle the following cases:

addi temp1 temp1 12

and

bge temp_1, temp_3, lbl_foo # temp_1 is read from

To test/debug this initialisation, the following statements inAllocations.py (functionSmartAllocator.run())
should help you (use with Main.py --debug, which sets debug=True for you):

if debug:
self.print_gen_kill()

As an example, here is the expected initialisation for testsdataflow/df04.c, obtained by:
python3 Main.py --debug --reg-alloc smart testsdataflow/df04.c
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instr 0: comment
gen: {}
kill: {}

instr 1: li temp_2, 2
gen: {}
kill: {temp_2}

instr 2: mv temp_1, temp_2
gen: {temp_2}
kill: {temp_1}

instr 3: comment
gen: {}
kill: {}

instr 6: li temp_3, 4
gen: {}
kill: {temp_3}

instr 8: li temp_4, 0
gen: {}
kill: {temp_4}

instr 9: bge temp_1, temp_3,
lbl_end_relational_2

gen: {temp_1,temp_3}
kill: {}

instr 10: li temp_4, 1
gen: {}
kill: {temp_4}

instr 7: lbl_end_relational_2

gen: {}
kill: {}

instr 11: beq temp_4, zero, lbl_end_cond_1
gen: {temp_4}
kill: {}

instr 12: li temp_5, 4
gen: {}
kill: {temp_5}

instr 13: mv temp_1, temp_5
gen: {temp_5}
kill: {temp_1}

instr 14: j lbl_end_if_0
gen: {}
kill: {}

instr 5: lbl_end_cond_1
gen: {}
kill: {}

instr 15: li temp_6, 5
gen: {}
kill: {temp_6}

instr 16: mv temp_1, temp_6
gen: {temp_6}
kill: {temp_1}

instr 4: lbl_end_if_0
gen: {}
kill: {}

EXERCISE #4 Ï Liveness Analysis, fixpoint. (Only test!)

We implemented for you the fixpoint iteration as a method (run_dataflow_analysis) inAllocations.py
“while it is not finished, store the old values, do an iteration, decide if its finished”. Therun_dataflow_analysis
program method makes calls to dataflow_one_step instruction methods. The result (live in, live out sets of
variables, are stored in _mapin and _mapout member sets of the SmartAllocator class).

All you have to do in this exercice is to check that the results that are obtained with with analysis are correct
at least for the examples of the testsdataflow/ directory.

To do so, the following lines should help you (again, using --debug) in the same file:

mapin, mapout = self.run_dataflow_analysis()
if debug:

self.print_map_in_out()

As an example, here is the expected output for testsdataflow/df04.c:
In: {0: {}, 1: {}, 2: {temp_2}, 3: {temp_1}, 4: {}, 5: {},

6: {temp_1}, 7: {temp_4}, 8: {temp_1,temp_3},
9: {temp_1,temp_4,temp_3}, 10: {}, 11: {temp_4},
12: {}, 13: {temp_5}, 14: {}, 15: {}, 16: {temp_6}, 17: {}, 18: {}}
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Out: {0: {}, 1: {temp_2}, 2: {temp_1}, 3: {temp_1}, 4: {}, 5: {},
6: {temp_1,temp_3}, 7: {temp_4}, 8: {temp_1,temp_4,temp_3},
9: {temp_4}, 10: {temp_4}, 11: {},
12: {temp_5}, 13: {}, 14: {}, 15: {temp_6}, 16: {}, 17: {}, 18: {}}

EXERCISE #5 Ï Interference graph
We recall that two temporaries x, y are in conflict if they are simultaneously alive after a given instruction,
which means:

• There exists a block (an instruction) b and x, y ∈ LVout (b)
• OR There exist a block b such that x ∈ LVout (b) and y is defined in the block
• OR the converse.

For the two last cases, consider the following list of instructions:
y=2
x=1
z=y+1

where x is not alive after the x=1 statement, however x is in conflict with y since we generate the code for x=1
while y is alive1.

From the result of the previous exercise, construct the interference graph (complete thebuild_interference_graph
function) of your program (each time a pair of temporaries are in conflict, add an edge between them). We give
you a non-oriented graph API (LibGraph.py) for that. Use the print_dot method and relevant tests to vali-
date your code.

In this exercise, we care about correctness more than complexity. It is OK to write an O(n3) algorithm (for
each t1, for each t2, for each control point c, check whether t1 and t2 have a conflict).

As an example, here is the conflict graph that should be obtained for df04.c (command line as usual):

temp_5 temp_3

temp_4

temp_1

temp_2 temp_6 temp_0

5.3 Register allocation and code production

Instead of the iterative algorithm of the course, we will implement the following algorithm for k register allo-
cation:

• Color the interference graph with an infinite number of colors, using the first ones as much as possible.
• The first k −3 colors will be mapped to registers.
• All the other variables will be allocated on the stack. For each color, we use a memory location according

to their coloring number.
Then the memory allocation:

• For non-spilled variable: replace the temporary with its associated color/register.
• For spilled variables: allocate in memory.

Some help:

1Another solution consists in eliminating dead code before generating the interference graph.
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• GP_REGS is an array of registers available for the register allocator.

• An element of type Register can be obtained from a given register color with the helper function
GP_REGS[coloringreg[xxx]], where coloringreg is graph coloring returned by the .color() func-
tion, and for offsets you have a constructor Offset(SP, xxx) (all in Operands.py).

• Be careful with types when dealing with the graph. As the comment in Allocations.py
states, self._igraph contains only elements of type string, while the alloc_dict map given to
self._pool.set_temp_allocation() must have Temporary objects as keys. There is no easy way to
retrieve a Temporary object from its name, but it is easy to get the name as a string from a Temporary:
just use str(). The easiest way to build alloc_dict is probably to iterate over all the temporaries of
the program (available in self._pool._all_temps), and for each temporary check the corresponding
color to associate it to the right register or memory location in alloc_dict.

EXERCISE #6 Ï Smart Register Allocation: implement!
Use the algorithm and the coloration method of the LibGraphes class to allocate registers (or a place in mem-
ory). For that, you have to complete the program method SmartAllocator.run() (in file Allocations.py).
Comments will help you design this (non trivial) function. 2. The allocation is followed by statement rewriting,
like in previous lab. You need to implement it in Allocations.py (replace_smart): it is very similar to the
previous lab’s version, but you have to deal with both memory locations and registers in the same function.

Validate your allocation on tiny well chosen test files (especially tests that augment the register pressure)
and all the benchmarks of the previous lab. We adapted the previous script for that.

On the df04.c example, the graph coloring succeeds with:

temp_5 temp_3

temp_4

temp_1

temp_2 temp_6 temp_0

EXERCISE #7 Ï Massive tests
Comment out all the print_dot instructions, debug, . . . and test on all test files you have. In particular, we do
not want any pdf file to be opened when we will use make tests on your delivered code.

EXERCISE #8 Ï Lab delivery
Make a clean archive with README.md, your test files, . . . (same instructions as before) and put it on TOMUSS
before Sunday January, 26th, 23:59.

http://tomuss.univ-lyon1.fr

2it seems that we also gave you the interfere function this year, this was not supposed to happen, . . .
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Appendix A
RISCV Assembly Documentation (ISA), rv64g

About

• RISCV is an open instruction set initially developed by Berkeley University, used among others by West-
ern Digital, Alibaba and Nvidia.

• We are using the rv64g instruction set: Risc-V, 64 bits, General purpose (base instruction set, and exten-
sions for floating point, atomic and multiplications), without compressed instructions. In practice, we
will use only 32 bits instructions (and very few of floating point instructions).

• Document: Laure Gonnord and Matthieu Moy, for CAP and MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the RISCV assembler and simulator, follow instructions of the first lab (git pull on the course lab repos-
itory).

A.2 The RISCV architecture

Here is an example of RISCV assembly code snippet (a proper main function would be needed to execute it,
cf. course and lab):

addi a0, zero, 17 # initialisation of a register to 17
loop:
addi a0, a0, -1 # subtraction of an immediate
j loop # equivalent to jump xx

The rest of the documentation is adapted fromhttps://github.com/riscv/riscv-asm-manual/blob/
master/riscv-asm.md and https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.
pdf

A.3 RISC-V Assembly Programmer’s Manual - adapted for CAP and MIF08

A.3.1 Copyright and License Information - Documents

The RISC-V Assembly Programmer’s Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017

Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full li-

cense text is available at https://creativecommons.org/licenses/by/4.0/.

• Official Specifications webpage: https://riscv.org/specifications/

• Latest Specifications draft repository: https://github.com/riscv/riscv-isa-manual

This document has been modified by Laure Gonnord & Matthieu Moy, in 2019.
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A.3.2 Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on which
extensions are included: The general registers (with the program counter), control registers, floating point
registers (F extension), and vector registers (V extension). We won’t use control nor F or V registers.

General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The program counter PC is separate from
these registers, in contrast to other processors such as the ARM-32. The first register, x0, has a special function:
Reading it always returns 0 and writes to it are ignored.

In practice, the programmer doesn’t use this notation for the registers. Though x1 to x31 are all equally
general-use registers as far as the processor is concerned, by convention certain registers are used for special
tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface
(ABI). This is what you will usually see in code listings. If you really want to see the numeric register names,
the -M argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 zero hardwired to 0, ignores writes n/a
x1 ra return address for jumps no
x2 sp stack pointer yes
x3 gp global pointer n/a
x4 tp thread pointer n/a
x5 t0 temporary register 0 no
x6 t1 temporary register 1 no
x7 t2 temporary register 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 a4 function argument 4 no
x15 a5 function argument 5 no
x16 a6 function argument 6 no
x17 a7 function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 6 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 t3 temporary register 3 no
x29 t4 temporary register 4 no
x30 t5 temporary register 5 no
x31 t6 temporary register 6 no
pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman “The RISC-V Reader”
(2017)

As a general rule, the saved registers s0 to s11 are preserved across function calls, while the argument
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registers a0 to a7 and the temporary registers t0 to t6 are not. The use of the various specialized registers
such as sp by convention will be discussed later in more detail.

A.3.3 Instructions

Arithmetic

add, addi, sub, classically.
addi a0, zero, 42

initialises a0 to 42.

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the
symbol table of the compiled module.
loop:

j loop
Jumps and branches target is encoded with a relative offset. It is relative to the beginning of the current

instruction. For example, the self-loop above corresponds to an offset of 0.

Branching

Test and jump, within the same instruction:
beq a0, a1, end

tests whether a0=a1, and jumps to ‘end’ if its the case.

Absolute addressing

The following example shows how to load an absolute address:
.section .text
.globl _start
_start:

lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:

.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 000005b7 lui a1,0x0

0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_LO12_I msg

Relative addressing

The following example shows how to load a PC-relative address:
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)

addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts

2: j 2b
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.section .rodata
msg:

.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:
0: 00000597 auipc a1,0x0

0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_I .L11

Load Immediate

The following example shows the li pseudo instruction which is used to load immediate values:
.section .text
.globl _start
_start:

.equ CONSTANT, 0xcafebabe

li a0, CONSTANT
which generates the following assembler output as seen by objdump:

0000000000000000 <_start>:
0: 00032537 lui a0,0x32
4: bfb50513 addi a0,a0,-1029
8: 00e51513 slli a0,a0,0xe
c: abe50513 addi a0,a0,-1346

Load Address

The following example shows the la pseudo instruction which is used to load symbol addresses:
.section .text
.globl _start
_start:

la a0, msg

.section .rodata
msg:

.string "Hello World\n"

A.3.4 Assembler directives for CAP and MIF08

Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:

Directive Arguments Description

.align integer align to power of 2 (alias for .p2align)

.file “filename” emit filename FILE LOCAL symbol
table

.globl symbol_name emit symbol_name to symbol table
(scope GLOBAL)

.local symbol_name emit symbol_name to symbol table
(scope LOCAL)

.section [{.text,.data,.rodata,.bss}] emit section (if not present, default
.text) and make current
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Directive Arguments Description

.size symbol, symbol accepted for source compatibility

.text emit .text section (if not present) and
make current

.data emit .data section (if not present) and
make current

.rodata emit .rodata section (if not present)
and make current

.string “string” emit string

.equ name, value constant definition

.word expression [, expression]* 32-bit comma separated words

.balign b,[pad_val=0] byte align

.zero integer zero bytes

A.3.5 Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler Notation Description Instruction / Macro

%hi(symbol) Absolute (HI20) lui
%lo(symbol) Absolute (LO12) load, store, add
%pcrel_hi(symbol) PC-relative (HI20) auipc
%pcrel_lo(label) PC-relative (LO12) load, store, add

A.3.6 Instruction encoding

Credit This is a subset of the RISC-V greencard, by James Izhu, licence CC by SA, https://github.com/
jameslzhu/riscv-card

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type
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RV32I Base Integer Instructions - CAP subset

Inst Name FMT Opcode funct3 funct7 Description (C) Note
add ADD R 0110011 0x0 0x00 rd = rs1 + rs2
sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2
xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2
or OR R 0110011 0x6 0x00 rd = rs1 | rs2
and AND R 0110011 0x7 0x00 rd = rs1 & rs2
slt Set Less Than R 0110011 0x2 rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R 0110011 0x3 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 0x00 rd = rs1 + imm
xori XOR Immediate I 0010011 0x4 0x00 rd = rs1 ˆ imm
ori OR Immediate I 0010011 0x6 0x00 rd = rs1 | imm
andi AND Immediate I 0010011 0x7 0x00 rd = rs1 & imm
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]
lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]
lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]
sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm
bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm
blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm
bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm
bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12
auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)
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Pseudo Instructions

Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

{lb|lh|lw|ld} rd, symbol
auipc rd, symbol[31:12]

Load global
{lb|lh|lw|ld} rd, symbol[11:0](rd)

{sb|sh|sw|sd} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

{flw|fld} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

{fsw|fsd} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if 6= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if 6= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O

Laure Gonnord, Matthieu Moy, et al. 39/40



Appendix B
A bit of PYTHON 3 & ANTLR4

B.1 PYTHON

https://docs.python.org/fr/3.5/tutorial/
htpp://perso.limsi.fr/pointal/_media/python:cours:mementopython3.pdf

Coding Style :

https://www.python.org/dev/peps/pep-0008/

We strongly recommand to use:

flake8 filename.py

on each file.

Exceptions in PYTHON Recall that in PYTHON errors can be declared, thrown and caught as depicts Figure B.1

# declare !
class MyError(Exception):

pass

# catch!
try:

...
except MyError:

...

# launch !
raise MyError("Error Message")

Figure B.1: Exceptions in PYTHON

B.2 ANTLR4

A nice book:

https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference

A nice tutorial:

https://tomassetti.me/antlr-mega-tutorial/
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