Theme 1
Analyse Lexicale, Analyse Syntaxique

1.1 Un peude cours

1.1.1 Analyse Lexicale avec flex

Le but de 'analyse lexicale est de transformer une suite de symboles en terminaux (un terminal peut étre
par exemple un nombre, un signe '+, un identificateur, etc...). Une fois cette transformation effectuée, la main
est repassée a I'analyseur syntaxique (voir ci-dessous). Le but de I'analyseur lexical est donc de “consommer”
des symboles et de les fournir a I'analyseur syntaxique. Un fichier de description pour Lex est formé de trois
parties, selon le schéma suivant :

declarations

h

définition des symboles

Hot

code additionnel

dans lequel aucune partie n’est obligatoire. Cependant, le premier %7% l'est, afin d'indiquer la séparation entre
les déclarations et les productions.

Les déclarations Cette partie d'un fichier Lex peut contenir :

— Du code écrit dans le langage cible, encadré par %{ et %}, qui se retrouvera au début du fichier synthétisé
par Lex. C’est ici que 1'on va spécifier les fichiers a inclure. Lex recopie tel quel tout ce qui est écrit entre
ces deux signes, qui devront toujours étre placés en début de ligne.

— Des expressions régulieres (dont on donne une partie de la syntaxe abondante dans la Figure 1.1) définis-
sant des notions non terminales, telles que lettre, chiffre et nombre. Ces spécifications sont de la forme :

notion expression_reguliere
Exemples :
blancs [\t\n 1+
lettre [A-Za-z]
chiffrel0 [0-9]
chiffrel6 [0-9A-Fa-f]
entier10 {chiffrel0}+

Les définitions des symboles Cette partie sert a indiquer a Lex ce qu’il devra faire lorsqu’il rencontrera tel ou
tel symbole. Celle-ci peut contenir :

— Des spécifications écrites dans le langage cible, encadrées par %{ et %} (toujours placés en début de ligne),
qui seront placées au début de la fonction yylex(), la fonction chargée de consommer les terminaux, et qui
renvoie un entier.

— Des productions de la forme :
expression_reguliere action

Sil'action est absente, Lex recopiera les caracteres tels quels sur la sortie standard. Si I'action est présente, elle
sera écrite en code du langage cible. Exemple, les deux regles suivantes :

[\tl+$;
[\t] printf(" ");

Erwan Guillou et Laure Gonnord et Nicolas Louvet 3/13

Université Lyon 1, FST, Département Informatique, M1

Symbole | Signification
r | Le caractere 'x’
. | N’importe quel caractere sauf le retour la ligne
[zy=z] | Soitx, soit y, soit z
[Abz] | Tous les caracteres, SAUF bet z
[a — z] | N'importe quel caractere entre a et z
[Aa — 2] | Tous les caracteres, SAUF ceux compris entre a et z
Rx | Zero R ou plus, ou R est n’importe quelle expression reguliere
R+ | UnR ou plus
R? | Zeroouun R (c’est-a-dire un R optionnel)
R{2,5} | Entre deux et cing R
R{2,} | Deux R ou plus
R{2} | Exactement deux R
"|zyz\" foo" | Lachaine *[zyz\"” foo
{NOTION} | L'expansion de la notion NOTION definie plus haut
VX | SiXestun’a’,'b’, 'f",'n’, ", 't
0 | Caractere ASCII0
4123 | Caractere ASCII dont le numero est 123 EN OCTAL
\x2A | Caractere ASCII en hexadecimal
RS | Rsuivide S
R&S | Rou S
R/S | R, seulement s’il est suivi par S
£ | R, mais seulement en debut de ligne
R$ | R, mais seulement en fin de ligne
<< EOF >> | Fin de fichier

Cahier d’exercices MIF12 — Automne 2015

FIGURE 1.1 — Expressions régulieres en Flex, syntaxe et sémantique

permettent de supprimer tous les espaces inutiles dans un fichier. Si I'action comporte plus d'une seule ins-
truction ou ne peut tenir sur une seule ligne, elle devra étre parenthésée par { et }. Il faut de plus savoir que
les commentaires tels que /* */ ne peuvent étre présents dans la deuxiéme partie d'un fichier Lex que
s’il sont placés dans les actions parenthésées. Dans le cas contraire, ceux-ci seraient considérés par Lex comme
des expressions régulieres ou des actions, ce qui donnerait lieu a des messages d’erreur, ou, au mieux, a un
comportement inattendu.

Afin de pouvoir utiliser dans les actions la valeur de I’expression reconnue, Lex fournit une variable nommée
yytext qui désigne dans les actions les caracteres acceptés par 'expression réguliére a gauche de la regle. Il
s’agit d'un tableau de caracteres de longueur yyleng (donc défini comme char yytext[yyleng]l).

Le code additionnel Cette section du fichier flex contient les implémentations C des fonctions nécessaires. Si
aucune fonction main n’est écrite (et que le fichier n’est pas lié a un fichier bison qui y fait référence), le code
suivant sera automatiquement généré lors de la compilation :

int main() {
yylex();
}

La compilation La génération de I'exécutable se fera a 'aide des commandes suivantes :

flex -o lexer.c lexer.l
gcc -o lexer.o -c lexer.c
gcc -o main lexer.o -1f1

1.1.2 Analyse syntaxique avec bison

Loutil bison permet de générer des analyseurs syntaxiques. Un fichier d’entrée décrit la grammaire a analy-
ser ainsi que les attributs et actions sémantiques associés. Un fichier . c est généré a partir de cette description,
celui-ci contient la mise en oeuvre de 'automate a pile pour une analyse ascendante. L'appel de I'analyseur se
fait par le biais de la fonction int yyparse () créée par bison. Les fichiers de description de grammaire pour
bison ont un formalisme similaire a ceux de Flex :

Définitions

o

Erwan Guillou et Laure Gonnord et Nicolas Louvet 4/13

Université Lyon 1, FST, Département Informatique, M1 Cahier d’exercices MIF12 — Automne 2015

Régles de production
hh
Code C/Ct++

Les définitions Cette section permet de décrire certaines parties de la grammaire (ensemble des symboles
terminaux, axiomes, attributs sémantiques...). Il est possible d’y inclure du code C en 'encadrant avec %{ et
%}. Le mot-clé Ystart permet de définir 'axiome de la grammaire. Le mot-clé %token permet de définir les
éléments du vocabulaire terminal. Les mot-clés %1left,%right et /nonassoc permettent de définir la priorité
(ordre de spécification des éléments) et ’associativité des opérateurs.

Les régles de production Les regles de production sont données sous la forme
symbole : régle [action];

Laction est ici encore optionnelle. Dans le cas oli un symbole acceépte plusieurs dérivations possibles, on utili-
sera le caractere ’| pour différencier les regles. Exemples :

Dot

A:abc...z
%o

Woth

A:abc

| def

%o

EXEMPLE 1. Soit la grammaire des expressions arithmétiques (addition et multiplication) entieres :
E->E+E| E=x*E]/ cste
Elle sera décrite par le fichier Bison suivant :

Ystart E
J%token +
J%token *
%token cste

o

E: E+ E
| E*x E
| cste

YA

int main (int argc, char** argv) {
yyparse ();
}

Lecode C Ladernieére section du fichier de description contient du code C (fonctions, variables globales...). Si
aucune fonction main n’est écrite, le code suivant sera automatiquement généré lors de la compilation :

main() {
yyparse() ;
}

1.1.3 Faisons communiquer Flex et Bison

Lanalyseur syntaxique fait appel a I'analyseur lexical pour connaitre le prochain symbole dans la chaine
a analyser. Pour Bison I'appel a I'analyseur lexical se fait par le biais de la fonction int yylex (). Dans la
majeure partie des cas, cet analyseur lexical sera généré a I'aide de Flex. La Figure 1.2 illustre la communication
et la chaine de compilation associée. La génération de 'exécutable se fera a I’aide des commandes suivantes :

Erwan Guillou et Laure Gonnord et Nicolas Louvet 5/13

Université Lyon 1, FST, Département Informatique, M1 Cahier d’exercices MIF12 — Automne 2015

flex -o lexer.c lexer.l

bison -d -o parser.c parser.y
gcc -0 parser.o -C parser.c

gcc -o lexer.o -c lexer.c

gcc -o main parser.o lexer.o -1fl

parser .c

parser.o
) yyparse ()

dascription
de la gammaine

N executable

parser .h

AN

T lexero

lexer .c

description

des symboles
yylex ()

FIGURE 1.2 — Chaine de compilation Flex/Bison

Loption -d de bison permet de dire a ce dernier de générer un fichier .h (ici parser.h) contenant la dé-
finition des constantes associées aux différents symboles terminaux de la grammaire. Ce fichier est a inclure
(#include<parser.h>) dans le fichier lexer.1 pour que 'analyseur lexical puisse renvoyer la valeur de ces
constantes en résultat. Dans les actions de 'analyseur lexical, on aura un return «symbole» ot «<symbole» est
I'une des valeurs définies dans les %,token.

EXEMPLE 2 (Le classique a”b", en flex+bison). Le fichier Flex retourne des tokens :

w{

#include "parser.h"

int yyerror (char*); %}

hto

a return TOKEN_A;

b return TOKEN_B;

(.I\n) yyerror ("symbole non reconnu");

hh

int yyerror (charx m) {
printf ("¥%s\n", m);
return 1;

}
Ces tokens sont utilisés dans le fichier Bison (remarquez la déclaration) :

%token TOKEN_A

%token TOKEN_B

%start E

hto

E : TOKEN_A E TOKEN_B
| TOKEN_A TOKEN_B;

He

int main (int argc, char** argv) {
yyparse Q;

}

Erwan Guillou et Laure Gonnord et Nicolas Louvet 6/13

Université Lyon 1, FST, Département Informatique, M1 Cahier d’exercices MIF12 — Automne 2015

1.2 Exercices

EXERCICE 1.1 » Reconnaissance de langages
On utilisera dans cet exercice la syntaxe flex pour définir des macros Flex.

1. Ecrire une définition des identificateurs (lettres, chiffres et _, ne commencant ni par un chiffre ni par_).

2. Ecrire une définition d’'un réel (parties entiere et fractionnaire obligatoires, signe optionnel, sans expo-
sant)

3. Ecrire une définition d’'un réel (partie entiere obligatoire, partie flottante optionnelle, signe optionnel,
avec/sans exposant) chiffre.

EXERCICE 1.2 » Mystere
On fournit le fichier f1ex suivant :

He
[a-z] printf ("%c", yytext [01 - ’a’ + ’A%);
\n printf ("%s", yytext);
. printf ("%s", yytext);
he
int main (int argc, char** argv)
{

yylex ();
}

Qu’elle est la fonctionnalité de ce fichier £1ex apres compilation ?

EXERCICE 1.3 » Ordre d’évaluation des régles

On fournit les fichiers suivants :

Flex :

%o

"(" return PO;
")" return PF;
"[" return CO;
"1" return CF;

\n

hh

Bison

F:L printf ("F->L\n");

L : LI printf ("L->LI\n")

| printf ("L->eps\n");
LT : LTI printf ("LI->LI I\n");
| I printf ("LI->I\n");

I :POLPF printf ("I->(L)\n");

| COL CF printf ("I->[L]1\n");

1. Que fait le fichier flex?
2. Donner 'affichage obtenu lors de I'’analyse de la chaine (3+a) *b [8-c] en précisant 'arbre de dérivation.
EXERCICE 1.4 » a"b" avec des compteurs

Ecrire un couple de fichiers flex/bison qui permettent de reconnaitre la grammaire a* b*. Utiliser des variables
compteurs dans le fichier Bison pour reconnaitre uniquement a” b".

Erwan Guillou et Laure Gonnord et Nicolas Louvet 7/13

