Université Lyon I

"Cryptographie et Sécurité des Systèmes Informatiques" (MIF30)

Partiel du 26 mars 2007. Durée: 2H.

Notes de cours/TD autorisées.

Calculatrice interdite, rédaction du détail des calculs exigée.

Exercice I

Pour $x \in \mathbb{Z}$, résoudre

$$x^2 \equiv 125 \pmod{627}$$

Exercice II. (Méthode RSA)

Les questions dans cet exercice II sont indépendantes.

- 1. Par analogie avec le triple DES, sous quelles hypothèses pourrait-on définir le triple RSA et quel en serait l'intérêt?
- 2. Alice a publié sa clef publique (n=35, e=17). De la part de Bob, elle reçoit le message crypté

$$MC = 32 \mod 35$$

- (a) Calculer la clef privée d d'Alice ainsi que $MC^{-1} \mod 35$.
- (b) Retrouver le message en clair M envoyé par Bob.
- 3. Alice a choisi une clef publique RSA (n, e) telle que

$$e = \frac{\phi(n)}{2} + 1$$

A-t-elle fait un bon choix?

4. Alice possède une liste de diffusion à laquelle Adam et Eve appartiennent. Elle crypte à l'aide du protocole RSA chacun de ses messages M à destination des personnes de sa liste.

Oscar constate ou obtient que la clef publique d'Adam soit de la forme $(n_1 = p_1 * q_1, e_1 = 2)$ et celle d'Eve de la forme $(n_2 = p_2 * q_2, e_2 = 2)$, n_1 et n_2 étant étrangers.

Oscar conçoit alors un logiciel qui découpe, avant d'être cryptés, les messages d'Alice en blocs formant des entiers M_i à crypter par RSA, tels que $M_i < n_1$ et $M_i < n_2$

Oscar offre son logiciel à Eve qui l'utilise alors.

- (a) Dire quels calculs Oscar peut faire maintenant pour décrypter tous les messages cryptés MC envoyés par Alice à sa liste de diffusion.
- (b) Avec les valeurs $n_1=7$ et $n_2=11$ faire ces calculs pour retrouver M dont le cryptogramme envoyé à Adam est $MC_1=4 \mod 7$ et celui envoyé à Eve est $MC_2=3 \mod 11$

Exercice III. Hachage

Oscar offre à Alice un logiciel contenant une fonction de hachage h s'appliquant à un message binaire de longueur pair:

$$M = (M_1, M_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n$$
, $long(M_1) = long(M_2) = n$

Le début de l'algorithme de ce logiciel commence par produire un message

$$f(M) = (m_1, m_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n$$

 $f:\mathbb{F}_2^{2n}\to\mathbb{F}_2^{2n}$ étant définie par

$$m_1 = g(g(M_1) \oplus M_2) \oplus M_1$$

$$m_2 = g(M_1) \oplus M_2$$

 $(\oplus: addition ("xor") dans \mathbb{F}_2^n)$

où q est l'application

$$M_i \mapsto \sigma(M_i) \oplus \sigma^{-1}(M_i)$$

et σ est la permutation circulaire de décalage à gauche

$$(x_n, x_{n-1}, \dots, x_2, x_1) \mapsto (x_{n-1}, \dots, x_2, x_1, x_n)$$

 $(\sigma^{-1}$ étant un décalage à droite).

Le hachage h est enfin défini par

$$h(M) = f(M) \oplus M \oplus (1, 1, 0, 0, \dots, 0, 0, 1, 1)$$

Montrer qu'Oscar a offert à Alice une fonction de hachage qui n'est pas cryptographique.

Exercice IV. Authentification

On considère le protocole d'établissement de clef de session:

- 1. $A \rightarrow B : K_A$
- 2. $B \rightarrow A: K_B, K'_B$
- **3.** $A \to B : e_{K'_B}(n_A, A)$
- **4.** $B \to A : e_{K_A}(n_B)$
- **5.** $B \rightarrow A : e_{K_A}(sign_B(n_A))$
- **6.** $A \to B : e_{K'_{B}}(h(n_{B}))$

οù

- n_A (resp. n_B) est un nomus ("nonce") engendré ("aléatoirement") par A (resp. B)
- K_A (resp. K_B) est la clef publique de A (resp. de B) (dont la validité dépasse largement la durée de la session en cours d'établissement)
- K_B' est une autre clef publique de B éphémère, ne durant que le temps de la session en cours d'établissement
- $sign_B$ désigne une fonction de signature de B
- \bullet e_K désigne une fonction d'encryptage avec la clef publique K
- h désigne une fonction de hachage cryptographique
- 1. A la fin de ce protocole, la clef de session commune entre A et B est $K_{AB} = n_A \oplus n_B$ (ou une fonction de K_{AB} , connue de A et B ou bien définie hors du protocole d'établissement de session). Le but du protocole est d'obtenir une croyance mutuelle en une clef commune entre A et B. Si le protocole s'est déroulé correctement uniquement avec les 6 passes précitées, le but est-il atteint: la clef est-elle fraîche, bonne, confirmée, de qui pour qui?
- 2. Quelle est l'utilité de la clef publique de B éphémère K'_B ?

3. Oscar, noté O, peut jouer "l'homme du milieu" de telle sorte qu'à la fin de son attaque la session se déroule entre A et O, bien que A croie communiquer avec B. Décrire dans un schema (de forme analogue à celui décrivant le protocole ci-supra) et expliciter une telle attaque dans laquelle Oscar "joue et gagne en 5 coups" en interceptant tous les messages de A pour B et de B pour A.