
Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

Public-key cryptography RSA
NGUYEN Tuong Lan

LIU Yi
Master Informatique
University Lyon 1

Objective:
Our goal in the study is to understand the algorithm RSA, some existence attacks and

implement in Java.
Liu’s part: I look for understanding and master the algorithm RSA for cryptography

by learning:
- All the theorems involved.
- The computations occurred in the RSA algorithm, like congruence relation, etc.
- The algorithms used in RSA like modular multiplicative inverse, modular

exponentiation, etc.
- The methods against attack. (Padding Scheme and Padding Method)
- The example of the application of RSA (Folder RSA)

And in the end, I could code my-self a short program to apply the algorithm :
generation the keys, encryption, and decryption.

For my part, I firstly tried to show the mathematical strength of algorithm RSA by
analyzing the different methods of factoring a big integer(Fermat, Euler and Pollard’s
Rho). I also provide the comparison of two methods (Fermat and Pollard’s Rho) by
implementing in Java code these methods. (Folder Factoring).

Secondly, I studied one of Side-Channel Attack: Timing Attack, implemented a
simple version in Java code (Folder Timing Attack)

Finally, knowledge of RSA using CRT will finish my part. (I also provide an
implementation in Java code) (Folder RSA-CRT).

(Remark: all the results tested in Java files is executed in Dell Inspiron D6000

processor 1.6 Ghz chips Intel Pentium M)

 - 1 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

A. RSA

1. History
In cryptography, RSA is an algorithm for public-key cryptography. The algorithm

was publicly described in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at
MIT; the letters RSA are the initials of their surnames, listed in the same order as on the
paper. It is the first algorithm known to be suitable for signing as well as encryption, and
one of the first great advances in public key cryptography. RSA is widely used in
electronic commerce protocols, and is believed to be secure given sufficiently long keys
and the use of up-to-date implementations. [WIKIa]

The RSA algorithm involves three steps: key generation, encryption and decryption

2. Key generation
RSA involves a public key and a private key. The public key can be known to

everyone and is used for encrypting messages. Messages encrypted with the public key
can only be decrypted using the private key. The keys for the RSA algorithm are
generated the following way:

 Choose two distinct prime numbers p and q
 Compute n = pq

 n is used as the modulus for both the public and private keys

Compute the totient: () (1)(1)n p qϕ = − − . ()nϕ is also called the Euler’s
totient function, it is the number of positive integers less than or equal to n that are co
prime to n. p and q are co-prime because they are all primes. Therefore,

() () () (1)(1)pq p q p qϕ ϕ ϕ= = − −

()n

 Choose an integer e such that 1 e ϕ< < , and e and ()nϕ share no factors other
than 1 (i.e. e and ()nϕ are co-prime)

 e is released as the public key exponent
 Determine d (using modular arithmetic) which satisfies the congruence relation

 (1de ≡ mod ()nϕ) ;
 Stated differently, ed − 1 can be evenly divided by the totient (p − 1)(q − 1)
 This relation is also called the modular multiplicative inverse of e modulo

()nϕ which is d : 1e d− ≡ mod ()nϕ
 This is often computed using the Extended Euclidean Algorithm
 d is kept as the private key exponent

 - 2 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

The extended Euclidean algorithm [WIKIb]is an extension to the Euclidean
algorithm for finding the greatest common divisor (GCD) of integers a and b: it also finds
the integers x and y in Bézout's identity :

gcd(,)ax by a b+ = (Typically either x or y is negative).

The extended Euclidean algorithm is particularly useful when a and b are co-prime,
since x is the modular multiplicative inverse of a modulo b. This is exactly our case
because : 1de ≡ (mod ()nϕ) ⇔ de-1 = k ()nϕ ⇔ de - k ()nϕ =1 by the definition
of congruence. It verifies also that e and ()nϕ are co-primes.

With d and ()nϕ given, e the inverse, and k an integer multiple that will be ignored.
This is the exact form of equation that the extended Euclidean algorithm solves; the only
difference being that gcd(d, ()nϕ)=1 is predetermined instead of discovered.

There exist several algorithms for resolving this equation:
 The recursive method :

120 x + 23 y = 1
(5*23+5) x + 23 y = 1
23 (5x+y) + 5 x = 1
..
1 a + 0 b = 1

The algorithm of the recursive method is the following:

 If a is divisible by b, the algorithm ends and return the trivial solution x = 0, y = 1.
 Otherwise, repeat the algorithm with b and a modulus b, storing the solution as x'

and y'.
 Then, the solution to the current equation is x = y', and y = x' minus y' times

totient of a divided by b

Which can be directly translated to this pseudocode:

function extended_gcd(a, b)
 if a mod b = 0
 return {0, 1}
 else
 {x, y} := extended_gcd(b, a mod b)
 return {y, x-y*(a div b)}

 The iterative method.
 The table method
 Etc...

Notes on the above steps:

 - 3 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

• Step 1: For security purposes, the integer p and q should be chosen uniformly at
random and should be of similar bit-length. Prime integers can be efficiently
found using a Primarily test.

• Step 2: Choosing e with a small hamming weight results in more efficient
encryption. Small public exponents (such as e=3) could potentially lead to greater
security risks.

The public key consists of the modulus n and the public (or encryption) exponent e.
The private key consists of the modulus n and the private (or decryption) exponent d
which must be kept secret.

• For efficiency the following values may be pre-computed and stored as part of the
private key:

o p and q: the primes from the key generation,
o d mod(p-1) and d mod(q-1),
o . 1q− mod()p

3. Encryption
Alice transmits her public key (n,e) to Bob and keeps the private key secret. Bob then

wishes to send message M to Alice. He first turns M into an integer 0 < m < n by using
an agreed-upon reversible protocol known as a padding scheme. He then computes the
ciphertext c corresponding to:

ec m≡ (. mod n)
This can be done quickly using the method of exponentiation by squaring. Bob then

transmits c to Alice.

4. Decryption
Alice can recover m from c by using her private key exponent d by the following

computation:
dm c≡ (mod n)

Given m, she can recover the original message M by reversing the padding scheme.
The above decryption procedure works because:

()d e d edc m m≡ ≡
).

. (mod n)
Now, since 1 (ed k nϕ= + ,

1 () ()()ed k n k nm m m m m≡ϕ ϕ+≡ ≡ . (mod n)
The last congruence directly follows from Euler's theorem[WIKIc] when m is

relatively prime to n. Euler’s theorem(also known as the Fermat-Euler theorem) states
that if n is a positive integer and a is a positive integer co-prime to n then :

 - 4 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

() 1naϕ ≡ . (mod n)
In fact, Eucler’s theorem is the generation of Fermat’s little theorem which states that

if n is a prime number, then for any integer a, an-a will be evenly divisible by n
na a≡ (mod n)

A variant of this theorem is :
1 1na − ≡ (mod n)

As we know () 1n nϕ = − if n is prime number. So we can generate Fermat’s little
theorem to Euler’s theorem. We return to Euler’s theorem, here a = mk and we assume m
is co-prime to n. So

()() 1k nm ϕ ≡ (mod n) ⇒ ()()k nm m mϕ ≡ (mod n)

If m is not co-prime to n, it means m is a multiple of p or q because m<n and p,q are
two primes. We use the Chinese remainder theorem[WIKId] to resolve this congruence
which is:

Suppose n1, n2, …, nk are positive integers which are pair-wise co-prime. Then, for
any given integers a1,a2, …, ak there exists an integer x solving the system of
simultaneous congruence

1x a≡ (mod 1n)

2x a≡ (mod 2n)
...........................

kx a≡ (mod Kn)
Furthermore, all solutions x to this system are congruent modulo the product N =

n1n2…nk.
So in using this theorem we can separate the original congruence to:

(1)(1)()k p qm m m− − ≡ (mod p)
and

(1)(1)()k p qm m m− − ≡ (mod q)
Assuming now m is a multiple of p, so

(1)(1)() 0k p qm m m− − ≡ ≡ (mod p)
m is co-prime to q since m is already a multiple of p and (p, q)are two different primes,
so :

(1) (1)()k p qm m m− − ≡ because of Euler’s theorem. (mod q)
So

(1)(1)()k p qm m m− − ≡ (mod p q×) ⇒
(1)(1)()k p qm m m− − ≡ (mod n)

This shows that we get the original message back:
dc m≡ (mod n)

 - 5 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

5. A working example
Here is an example of RSA encryption and decryption. The parameters used here are

artificially small, but one can also use OpenSSL to generate and examine a real keypair.

 Choose two prime numbers

p = 7 and q = 19

 Compute n = pq

n = 7×19 = 133

 Compute the totient () (1)(1)n p qϕ = − −

()nϕ = (7 - 1)(19 - 1) = 108

 Choose e > 1 co-prime to 108

e = 5

 Compute d such that (1de ≡ mod ()nϕ) e.g., by computing the modular
multiplicative inverse of e modulo ()nϕ :

d = 65
since 5 · 65 = 325 = 1 + 3 · 108.

The public key is (n = 133, e = 5). For a padded message m the encryption function

is: mod n mod 133. The private key is (
ec m= = 5m n = 133, d = 65). The

decryption function is:

dm c= mod n = mod 133 65c

For example, to encrypt m = 6, we calculate

56c = mod 133 = 62

To decrypt c = 62, we calculate

. mod 133 = 6
6562m =

 - 6 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

The last calculation can be computed efficiently using the square-and-multiply
algorithm for modular exponentiation [WIKIe]. First, it is required that the exponent e be
converted to binary notation. That is, e can be written as:

1

1

2
n

i
i

i

e a
−

=

= ∑

In such notation, the length of e is n bits. ai can take the value 0 or 1 for any i such
that 0 ≤ i < n - 1. By definition, an - 1 = 1.

The value be can then be written as:

1

1

1(2)
2

0

()

n
i

i i
i i

na
ae

i

b b b

−

=

−

=

∑
= =∏

The solution c is therefore:

1
2

0

()
i

i

n
a

i

c b
−

=

≡∏ (mod n)

The application of the method to our example:

 m = Cd % n
 = 6265 % 133
 = 62 * 6264 % 133
 = 62 * (622)32 % 133
 = 62 * 384432 % 133
 = 62 * (3844 % 133)32 % 133
 = 62 * 12032 % 133

= 62 * 3616 % 133
 = 62 * 998 % 133
 = 62 * 924 % 133
 = 62 * 852 % 133
 = 62 * 43 % 133
 = 2666 % 133
 = 6

In real life situations the primes selected would be much larger, however in our
example it would be relatively trivial to factor n=133, obtained from the freely available
public key back to the primes p and q. Given e, also from the public key, we could then
compute d and so acquire the private key.

 - 7 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

6. Implement in Java (Folder RSA)
We implement a class Java qui generate the keys, encrypted the message, then

decrypted the message coded.

B. Attack on RSA

1. Mathematical attack on RSA
1.1 Purpose of mathematical

If we know φ(n) and the public key (the modulus n and exponent e), we can
determine the private key d because d.e ≡ 1 (mod φ(n)), and we can find d with Extended
Euclidean algorithm. In fact, we use the Bezout identity:

Given a, b, we can find 2 integers x, y such as :
a.x + b.y = gcd(a,b)

In our case, this equation become d.e + k. φ(n) = 1 because gcd(e, φ(n)) =1. Plus, we
have another condition which is gcd (d, φ(n)) =1. Knowing the private key d, we can read
the message.

So, how can we determine φ(n)? Knowing φ(n) is equivalent to factoring n. Because
n - φ(n) +1 = p.q – (p-1)(q-1) -1 = p + q.

With p.q and p+q, we’ll solve the equation in order to determine p and q

() 0..2 =++− qpXqpX

For example, n= 2773, φ(n) = 2668, so p + q = 106, the equation is (X-47)(X-59), we
deduce p = 47, q = 59.

1.2 Problems and difficulties
So with φ(n) and n , we can read any message encrypted. So, our problem is

equivalent to the problem of Prime factorization. Prime factorization requires splitting an
integer into factors that are prime numbers; and every integer has a unique prime
factorization. Multiplying two prime integers together is easy, but as far as we know,
factoring the product is much more difficult. Unluckily, we don’t have for now an
algorithm efficient for factoring an integer. We can take a look at some examples:

 - 8 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

-In 1994, RSA-129 (the key has the length of 426 bits) was factored in March 1994

by Atkins et al. [AGL95] using the resources of 1600 computers (which included two fax
machines) from the Internet. The factoring took about 4000 to 6000 MIPS years of
computation over an eight-month period

-In 2005, F. Bahr, M. Boehm, J. Franke, T. Kleinjung factored a 193-digit number
(RSA-640) utilizing 30 2.2GHz-Opteron-CPU took years over a span of 5 months.

This is why the size of the modulus in RSA determines how secure an actual use of
RSA is; the larger the modulus, the longer it would take an attacker to factor, and thus the
more resistant to attack the RSA modulus is. Therefore, RSA can be called,
mathematically, a strong encryption. The difficulties of breaking RSA is rely on the
assumption that it is not possible to factor the product of two large prime numbers in
polynomial time. In other words, for sufficiently large numbers the time it takes to factor
such numbers increases faster than any finite-degree polynomial.

However, we still take a look at some ways of factoring integers.

1.3 Factoring Algorithm
A method tradition is Trial Division. We will divide successfully by 2, 3, 5, 7, 11 …

This method is just effective for the number up to 1.000.000 not with a large number.
Because the worst case time to factor a composite N is sqrt(N) divisions.

Now we will consider threes others methods: Express N as the difference of 2 squares
(Algorithm de Fermat), express N as the sum of two squares in difference ways, finally
Pollard’s Rho method

1.3.1 Algorithm of Fermat
This method is based on the formula of difference of 2 squares:

))((22 yxyxyx +−=−
In case of the particular modulus N in RSA n = p.q (p, q are 2 primes), we can

express n as:
22

22
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ +

=
qpqpn . We will follow step by step:

Let k the smallest positive integer so that . Consider now: . If we can a
number h such as , then

nk >2 nk −2

22 hnk =−))((hkhkn −+= . As n can only factor as p.q. so we
will be sure k+h and k-h must be 2 prime numbers. If not the case, we
consider . Eventually, we will find g such as () nk −+ 21 () 22 hngk =−+ is a square. So
n can be factored as (k+g+h)(k+g-h).

Here an example, n = 6699557, 3,2588=n then we choose k = 2589.
22 583364 ==− nk , so n = 2531.2647.

Take a look now at another example: n = 26504551 3.5148=n , so we choose k =

5149.

76502 =− nk is not a square

 - 9 -

http://www.x5.net/faqs/crypto/faqref.htm#AGL95
http://en.wikipedia.org/wiki/RSA-640

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

17949)1(2 =−+ nk is not a square
28250)2(2 =−+ nk is not a square
…….

22 2757)691(=−+ nk
So n can be factored as 3083.8597.
As we can see in 2 examples, this algorithm works if the difference between p and q

is small. Unless, we have to compute a lots of operations. We will express g as the
function of (p-q) and n. In fact :

() 22 hngk =−+

nhgn +=+ 2)((as nk ≈)
As n = (k+g+h)(k+g-h), and n = p.q. Plus n has only one way of factoring. So p =

k+g+h and q=k+g-h. We have h = (p-q)/2.
Finally, we have:

nnqpg −+⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

2

So, if the difference between p and q is large, the number of operations is grand
(because we have to try from 1 to g).

1.3.2 Algorithm of Euler
The idea of this method is that if we can express a number n as the sum of 2 squares

in 2 difference ways, we can factor n. We will talk about the condition of such
expression, now we suppose that n can be displayed as 2 sums of 2 squares.

2222 dcban +=+=

(a-c)(a+c)=(d-b)(d+b)

Let k = gcd ((a-c),(d-b)), so

a-c = km, d-b = kh.
(h and m are the integer, and gcd(h,m)=1)

m(a+c)=h(b+d)

And as gcd(m,h)=1, so we must have (b+d) is divisible m. We have (b+d)=m.n.

Consquently, a+c=h.n. We have 4 equations:
a-c=k.m
a+c=h.n
d-b=kh

d+b=m.n
We deduce:

a=(km+hn)/2
b=(mn-kh)/2

22

22
⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ +

=
khmnhnkmn

 - 10 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

4
2..2.. 22222222 kmhnhknmkmhnnhmkn −++++

=

4
)()(222222 nkhmnkn +++

=

()()
4

2222 hmnkn ++
=

In our case, we know n is factored as p.q. So we can express p and q.
Euler's factorization method is more effective than Fermat's for integers of which

factors are not close and actually much more efficient than trial division if one can find
representations of numbers as sums of two squares reasonably easily. However, the great
disadvantage of Euler's factorization method is that it cannot be applied to factoring an
integer with any prime factor of the form 4k+3 occurring to an odd power in its prime
factorization, as such a number can never be the sum of two squares. As Fermat said, the
odd prime p can be expressed by if and only if 22 yx +)4(mod1≡p .

1.3.3 Pollard’s Rho method.
Let’s say p is one of two factors of n. If you start picking numbers at random (keeping

your numbers greater or equal to zero and strictly less than n), then the only time you will
get is when)(mod nba ≡ a and b are identical. However, since p is smaller than n, there
is a good chance that sometimes when)(mod pba ≡ a and b are not identical.

)(mod pba ≡ means (a-b) is multiple of p, we also know that n is multiple of p. So to
find p , all we have to do is to compute gcd (a-b, n).

So, this principal of Pollard’s Rho method is to pick a random number a. Pick
another random number b. See if the greatest common divisor of (a-b) and n is greater
than one. If not, pick another random number c. Now, check the greatest common divisor
of (c-b) and n. If that is not greater than one, check the greatest common divisor of (c-a)
and n. If that doesn't work, pick another random number d. Check (d-c), (d-b), and (d-a).
Continue in this way until you find a factor.

Actually, we will do it with faster way. Because we're only concerned with numbers
from zero up to (but not including) n, we will take all of the values of f(x) modulo n. We
start with some x1. We then choose to pick our random numbers by x f(x) (mod n).
The choice of function is under the form f(x) =

k+1 ≡ k

ax +2

Example:
f(x) = 12 −x

Again, if n = 1189, this proceeds as follows. Let x(0) = 4.
 k x(2*k-1) x(2*k) x(2*k) - x(2*k-1) d(k)

 0 4
 1 15 224 209 1
 2 237 285 61 1
 3 372 459 222 1
 4 227 401 116 29

Thus N = 29*41.

 - 11 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

1.3.4 Implement Fermat and Pollard’s Rho (Folder Factoring)
For method of Pollard’s Rho, we use the function f(x) = cx +2 . The two first number

is x and y= . The next step x= f(x) and y= f(f(y)). 2x
We obtain the time of factoring N (in ms)

Number of bit (N) Method Rho Fermat
10 0 31
20 94 219
25 200 13375
25 198 3375
25 188 765
32 282 899515
40 8000
40 8456
50

As we can see, from 50 bits, the factoring is too expensive. So, as a conclusion for

this part, to break RSA, mathematically, we will concentrate on improving the power of
the computer. In fact, we can use an extremely fast factoring machine known as TWIRL.
TWIRL promises to break even 1024bits RSA encryption in less than a year for an
extremely reasonable price. Using the Number Sieve Factoring theorem5 TWIRL uses
parallel processing to factor large numbers at high speeds. Using the same amount of
silicon as a Pentium Xeon Processor and 1 GB of memory, the TWIRL device searches
20,000 times faster than the Intel chip.

2. Implementation Attack
2.1 Introduction

The previous topic shows us the mathematical strength of RSA. However, the
research has shown us that it is able to recover the private key of RSA without directly
breaking RSA (factoring the modulus n). In fact, Kocher[RCKa96] succeeded in
recovering the RSA factors by carefully measuring amount of time required to perform
the operation of keys. The method is called Timing attack. Actually, Timing Attack is
one of the subsets which belong to Side Channel Attack.

The Side Channel Attack is an attack that bases on information gain from the physical
implementation of a cryptosystem such as: timing information, power consumption,
electromagnetic leak

2.2 General Method
Just for reminding the encryption using RSA, to encrypt a plaintext message M, we

compute C = Me mod n (e is public key), where C is the encoded message, which is
called ciphertext. To decrypt the ciphertext C, we compute M = Cd mod n (d is a private
key), which yields the original message. For a timing attack, the attacker needs to have

 - 12 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

the target system compute Cd mod n for several carefully selected values of C. And with
a measurement of time performance, the attacker can recover bit by bit the private key d.

As we can see above, to create the ciphertext, we have to compute M = Cd mod n

which is complex when N, M are large. So, in order to speed up the operation, we’ll use
the Fast Exponentiation Algorithm (Square and Multiply Algorithm) which is described
as below:

We have the binary expression of d is ∑
−

=

−−
1

0

12.
t

i

it
id

 (t is the length of keys). Normally,11.. −= to dddd 10 =d , because we know the length
of keys.

z = C
for j = 1 to t-1 do

nzz mod2≡
if then 1==jd
 nCzz mod.≡
endif

endfor
return z

(z returned is our message M).
Here, we remark that the operation a mod b is done only when a > b. If that’s the

case, a mod b = (a-b) mod b. Unless, in case a< b, we have a mod b = a. Therefore, if the
j-th bit de private key d is 1 we have an extra operation: nCzz mod.≡ which will put
an extra time. Plus, if z.C > n we will also have an extra time of operation. So all we have
to do is to create a subset of messages, then separate them in different categories. Finally
we measure carefully the time required to perform these operations in order to decide the
j-th bit is 1 or 0. We will now consider a set of messages.

2.3 Attack the multiply
Actually, we will choose 2 types of messages: one needs an extra time to operate the

reduction when j-th bit of private is 1, second does not need this reduction. With more
details, we determine message E and F such as;

32

3

FnF
nE
<<

<

We will discover . jd

So, if we have to operate mod n and mod n. But these two
operations don’t have the same time to perform. In case of F, we have a reduction

(because) which is not performed in case of E (because). If =0,

we will perform

1=jd EE .2 FF .2

nF −3 3Fn < nE <3
jd

2E mod n and mod n. Since and <n, we don’t have any
reduction in two cases, so the performances will take the same time. It means the run time
of the algorithm will be longer for F if and only if

2F nE <2 2F

1=jd . We will discover . jd

 - 13 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

However, in reality, how can we make a decision about this difference? In fact,
instead of choosing 2 types of messages, we choose 2 series of messages:

 And then we calculate the time average .,...,;..., 2121 kk FFFEEE
./)...(;/)...(2121 kFFFtimeFkEEEtimeE kk +++=+++= If timeE < timeF+e, we

decide (here, e can be determined by experiences). Once1=jd 1=jd , we can discover
bits rested of private key d.

Here an example. The results are obtained by Computer Pentium Pro 200MHz

Windows NT. [JFDa98].

2.4 Our implement in Java (Folder TimingAttack)

In this implement, we rewrite the function modPow of class BigInteger. This version

is very simple, we chose only 1 E et 1 F. We will show you that, that number of errors
increased when length of keys increase.

public BigInteger decrypt(BigInteger message) {

 return message.modPow(d, N);
 }

 public long decrypt1(BigInteger message, int i){
 BigInteger z;
 BigInteger zz;
 BigInteger zC=null;
 long nano;
 z = message;

 nano=System.nanoTime();
 zz= z.multiply(z).mod(N);
 z=zz;
 if (d.testBit(i)){
 zC = z.multiply(message).mod(N);
 z=zC;
 }

 return System.nanoTime()-nano;

 }

 - 14 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

For the attack we will execute decrypt1 length of private key d times:

for (int i=rsa.d.bitLength()-2;i>-1;i--){
 long timeDecryptedE = rsa.decrypt1(ta.E,i);
 long timeDecryptedF = rsa.decrypt1(ta.F,i);
 if (timeDecryptedE < timeDecryptedF){
 d_recover = d_recover+"1";

if (!rsa.d.testBit(i)){// if the exact bit is 0, it’s error
 k++;
 }
 }else{

if (!rsa.d.testBit(i)){// if the exact bit is 1, it’s error
 k++;
 }
 d_recover = d_recover+"0";
 }
 }
 System.out.println(k);

 System.out.println(d_recover);
We compare the recovered key with the private key to determine the number of error

bits. We obtain the result following:

Length of private key Number of bits error
62 2
62 4
62 5
62 6
62 6
125 30
125 44
125 30
125 36
125 30
254 50
256 48
256 60
256 49
255 52
266 48
256 46

As we can see, the errors is too much, sometimes we can only recover a half of the

key. In a reality, we need to try with 100,000 samples of E and F (it depends on the
length of key too [JFDa98]) for recover the full key.

 - 15 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

C. Against-Attack

1. Chinese reminder theorem (CRT)
1.1 The idea

As we know, the generation of keys RSA is the series of operations modulus. The
more keys’ length, the more time consuming on computer. More important, RSA using
CRT can be saved from Timing Attack. Because we don’t compute directly modules d
(the private key) but the modulus of factors (we can see it so far in this report). The
Chinese have the genius idea which is: We can express the modulus of a number as the
modulus of its factors. So we won’t compute the modulus directly with d. It will maybe
prevent the Timing Attack.

Let N = pq denote a RSA modulus, e a public exponent, and d the corresponding
private exponent, so that . Let CRT(x; y) mod N denote the number z such
that and ; note that this number is uniquely determined modulo

ned mod1. ≡
pxz mod≡ qyz mod≡

N..

1.2 Speed up RSA generation of keys with CRT

With help from the CRT we can speed up the decryption of RSA as follows. As a first

idea we can compute the result mod p and q separately, i.e. to merge the results of
(mod p) and (mod q). This will require twice as many operations as we need to
compute two exponentiations. However as partial results need only be calculated modulo
p and modulo q respectively, these operations are done with numbers of only half as
many bits and hence each multiplication costs only a forth of what it costs for full size
numbers. As CRT is almost for free we gain a factor about 2 in running time.

dC
dC

Our goal is to find z such as:

nmz d mod≡
We will compute

qmy
pmx

qd

pd

mod
mod

)1mod(

)1mod(

−

−

≡

≡
(2)

We can use the result of Garner which is [SMYa]
)mod)]mod).(.([(1 qpqxypxz −−+=

Implement in Java (folder RSA-CRT)
The result of decryption using CRT is always faster then RSA normal (100 compare

to 400-500 ms with the keys de 2048 bits)

 - 16 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

2. Padding scheme
When used in practice, RSA is generally combined with some padding scheme. The

goal of the padding scheme is to prevent a number of attacks that potentially work against
RSA without padding [WIKIa]:

• When encrypting with low encryption exponents (e.g., e = 3) and small values of
the m, (i.e. m < n1 / e) the result of me is strictly less than the modulus n. In this
case, ciphertexts can be easily decrypted by taking the eth root of the ciphertext
over the integers.

• Because RSA encryption is a deterministic encryption algorithm – i.e., has no
random component – an attacker can successfully launch a chosen plaintext attack
against the cryptosystem, by encrypting likely plaintexts under the public key and
test if they are equal to the ciphertext. A cryptosystem is called semantically
secure if an attacker cannot distinguish two encryptions from each other even if
the attacker knows (or has chosen) the corresponding plaintexts. As described
above, RSA without padding is not semantically secure.

• RSA has the property that the product of two ciphertexts is equal to the encryption

of the product of the respective plaintexts. That is .
Because of this multiplicative property a chosen-ciphertext attack is possible. E.g.
an attacker, who wants to know the decryption of a ciphertext c = m

1 2 1 2() mode e em m m m n≡

emod n may
ask the holder of the private key to decrypt an unsuspicious-looking ciphertext c'
= cre mod n for some value r chosen by the attacker. Because of the multiplicative
property c' is the encryption of mr mod n. Hence, if the attacker is successful with
the attack, he will learn mr mod n from which he can derive the message m by
multiplying mr with the modular inverse of r modulo n.

To avoid these problems, practical RSA implementations typically embed some form
of structured, randomized padding into the value m before encrypting it. This padding
ensures that m does not fall into the range of insecure plaintexts, and that a given
message, once padded, will encrypt to one of a large number of different possible
ciphertexts.

3. Padding method
 Bit padding

A single set ('1') bit is added to the message and then as many reset ('0') bits as
required are added. The number of reset ('0') bits added will depend on the block
boundary to which the message needs to be extended. In bit terms this is "1000 ... 0000",
in hex byte terms this is "80 00 ... 00 00". This method can be used to pad messages
which are any number of bits long, not necessarily a whole number of bytes long.

 - 17 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

 PKCS7
Padding is in whole bytes(octets). The value of each added byte is the numbers of

bytes that are added, i.e. N bytes, each of value N are added. The number of bytes added
will depend on the block boundary to which the message needs to be extended. The
padding will be one of:
 01
 02 02
 03 03 03
 04 04 04 04
 05 05 05 05 05
 etc.

Example: In the following example the block size is 12 bytes and padding is required
for 4 bytes
... | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |

D. Conclusion
By studying the cryptography algorithm RSA, I have learned

 many famous theorems such as : Euler’s theorem, Fermat’s little theorem, Chinese
remainder theorem and their applications in RSA.

 The concepts : congruence relation, Euler’s totient function, modular multiplicative
inverse, modular exponentiation, padding scheme.

 The algorithm: extended Euclidean algorithm for resolving the modular
multiplicative inverse in order to finding the private key, square-and-multiply
algorithm for modular exponentiation.

With mastering the principle of RSA, I find out the vulnerabilities of it, and I also

studied how to defend the RSA against an experienced attacker, that’s padding scheme.
Of course, we have many others types of attack, like factorizing directly n which is p*q
or timing attack, but this is not my part, my co-worker will present it blow.

And I created also a program in java to test this algorithm, with the test I do in the end
which verifies if the message decrypted is equal to the original message, it proves that
this program works well.

For my conclusion, the system using RSA is not always protected in spite of its
strength. The Timing Attack showed us that the attackers can break a system without
knowing the algorithm of encryption/decryption. As we can see above, the attackers have
to know the private key d and then compute the modulus to obtain the message.

And after that, the research has responded this type of attack by using Chinese
Remainder Theorem. Then again, we have another type of attack called Fault Attack. In
fact, the fault compute x and y1 on (2) can be used for discovering p or q

)mod)]mod).(1.([(1 1 qpqxypxz −−+=

By computing gcd(z1-z,n), we will have p, the first divisor.
Finally, only one regret is that we could not implement a Timing Attack on OpenSSL

as we planned because not only the proof of all theorems but also the implementation of
the algorithms took us too much time.

 - 18 -

Cryptography RSA NGUYEN Tuong Lan and LIU YI
Master Informatique University Lyon 1

Reference:
[SMYa] Cryptanalysis of Two Protocols for RSA with CRT based on Fault

Infection Sung-Minh Yen – Dong ryeol Kim
[RCKa96] Timing Attack on implementations of Diffie-Hellman, RSA, DSS and

Other Systems Paul C. Kocher
[JFDa98] :A Practical Implementation of the Timing Attack de J.-F. Dhem, F.

Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater and J.-L. Willems
[WIKIa] http://en.wikipedia.org/wiki/RSA
[WIKIb] http://en.wikipedia.org/wiki/Extended_Euclidean_Algorithm
[WIKIc] http://en.wikipedia.org/wiki/Euler%27s_theorem
[WIKId] http://en.wikipedia.org/wiki/Chinese_remainder_theorem
[WIKIe] http://en.wikipedia.org/wiki/Modular_exponentiation

 - 19 -

http://en.wikipedia.org/wiki/Extended_Euclidean_Algorithm
http://en.wikipedia.org/wiki/Euler%27s_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Modular_exponentiation

	Public-key cryptography RSA
	Objective:
	A. RSA
	1. History
	2. Key generation
	3. Encryption
	4. Decryption
	5. A working example
	6. Implement in Java (Folder RSA)
	B. Attack on RSA
	1. Mathematical attack on RSA
	1.1 Purpose of mathematical
	1.2 Problems and difficulties
	1.3 Factoring Algorithm
	1.3.1 Algorithm of Fermat
	1.3.2 Algorithm of Euler
	1.3.3 Pollard’s Rho method.
	1.3.4 Implement Fermat and Pollard’s Rho (Folder Factoring)

	2. Implementation Attack
	2.1 Introduction
	2.2 General Method
	2.3 Attack the multiply
	2.4 Our implement in Java (Folder TimingAttack)

	C. Against-Attack
	1. Chinese reminder theorem (CRT)
	1.1 The idea
	1.2 Speed up RSA generation of keys with CRT

	2. Padding scheme
	3. Padding method

	D. Conclusion
	Reference:

