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Location and supervision

The internship will take place in LIP, Lyon, coadvised by Laure Gonnord and remotely with Carsten Fuhs.

General Context : CODAS project

The long term objective of the ANR CODAS project is to give a general way to reason about and manipulate
programs with general control flow and complex data structures.

A PhD is ongoing on the definition of a polyhedral model that include trees, but it has not explored the relation-
ship between inductive data structures and term rewriting. In this internship we want to explore this idea.

Indeed, the problem of scheduling is closely linked to the well-studied topic of termination. This motivates the
investigation of the benefits we may encounter from the rewriting community :

— Automated termination analysis for term rewrite systems (TRSs) [2] is a well-studied topic and has given
rise to several powerful, fully automatic, tools over the last years (e.g., AProVE, Mu-Term, TTT2). TRSs are
particularly suitable to represent complex data structures, such as lists or trees.

— Two-stage approaches to termination analysis, harnessing the power of termination tools for TRSs also for
programming languages, have been proposed [5, 7, 6]. In the first stage, symbolic execution and abstrac-
tion on programming language level are used to over-approximate all possible program executions. From
this program analysis, one then extracts a TRS whose termination implies the termination of the original
program. In the second stage, termination of this TRS is analyzed with existing tools.
This approach is currently limited mainly by scalability of the program analysis front-ends.

— More recently Fuhs et al. [4] proposed an extension of term rewriting by built-in predefined integers, based
on the observation that termination, in particular for imperative programs, often depends on integer va-
riables. This allows existing techniques for proving termination on integers to be combined with techniques
for term rewriting. Tools for analysis of term rewriting are now successfully applied for termination analysis
(e.g., for Java [7, 3] and C programs [9]).

The preliminary paper [1] describes this relationship between schedules and termination proofs, and derives an
estimation on the parallel complexity of the given programs. This paper can be viewed as a first step of the current
proposal.

Internship content

Steps of the internship :
— In the first part of the internship, a high level langage with inductive data structures, à la ML, will be defined,

and some benchmarks will be designed in order to further validate our approach.



— The second step is to define what the notion of a scheduling means for this semantics. Formally, we aim to
express the notion of dependence, like the “happens-before” relation of the polyhedral model. This notion
of scheduling will be used to construct a dependence graph of a given program under analysis. The intern
will explore how the notion of position (in classical term rewriting) [] could be used to define the notion of
dependance. (S)He might also get some inspiration from the parallelization of functional programs proposed
in [8].

— A first prototype will be implemented.
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