
Efficient static analyses for GPUs

Laure Gonnord, Matthieu Moy – Université Lyon1/LIP
Caroline Collange – Inria Rennes/IRISA

2020

LIP – UMR CNRS / ENS Lyon / UCB Lyon 1 / Inria – 69007 Lyon
IRISA – UMR CNRS / Centrale Supelec / ENS Rennes / IMT Atlantique / Inria / INSA / Université Bretagne Sud / Université Rennes 1

E-mail : Caroline.Collange@inria.fr et Laure.Gonnord@ens-lyon.fr et Matthieu.Moy@univ-lyon1.fr

Keywords

Abstract interpretation, compilation, GPU, scratchpad memory, numerical abstract domains.

Location and supervision

The internchip will take place in LIP, Lyon, in partnership with IRISA, Rennes. It will be cosupervised by Matthieu
Moy (60%, main supervisor), Laure Gonnord (20%) at LIP, and Caroline Collange (20%) at IRISA.

General Context

The gap between memory performance and compute performance of processor architectures keeps widening.
On modern architectures, external memory accesses cost orders of magnitude more than computations. For ins-
tance, the Nvidia Geforce 1080 Ti GPU can perform 100 floating-point operations for each word read from external
memory.

As a consequence, reusing data through on-chip memories such as caches or scratchpads is of paramount
importance to optimize performance and minimize energy consumption. On-chip memory is fast and low-power but
its capacity is severely restricted.

GPUs, FPGAs typically rely on software-managed caches (scratchpad memories) in addition to or as an alter-
native to hardware-managed caches. The compiler is responsible for data placement in such software-managed
on-chip memory. Proper data placement demands accurate static analyses to identify which data should be placed
in scratchpad memories. Indeed, caches should only retain data that is effectively reused.

In practice, GPU-targeted programming models like OpenCL and CUDA let software express data reuse by
partitioning the parallel domain. A single program, or kernel, is executed by many work-items, grouped in work-
groups. Threads within the same work-group may synchronize together and exchange data through user-allocated
local memory, which physically resides on-chip. Local memory is typically used to stage data coming from the
off-chip device memory.

The global objective of this thesis is to design efficient analysis to allow code transformation to minimize ac-
cesses to the external memory.

Such code transformation need to know the addresses accessed by the program, to be able to pre-fetch the
corresponding values.

Internship content

The global objective is to design static analysis of programs to infer properties that allow code transformation
to minimize memory accesses. We focus on programs manipulating 2-dimensional arrays, and programs running
on GPU, where memory optimization is particularly crucial.

A straightforward range analysis is not sufficient for several reasons :

1. Addresses are rarely constant, but usually relative, e.g. to the start address of an array

2. For programs manipulating multi-dimensional arrays, a convex shape within the array is not convex in terms
of address. For example a rectangle area within a 2D-array is a sequence of intervals. Using the usual
convex hull operation on such shapes would loose important information.



As a consequence, we need symbolic analysis to address point 1), and intervals modulo a value to address
point 2). The analysis will likely rely on classical abstract interpretation, with a new numerical domain adapted to
2D arrays. The numerical domain should be designed to be scalable, although the scalability constraint is not as
strong for GPU compute kernels (which are usually relatively small) than for program-wide analysis.

The intership will consist of some of the following steps :
— Study a set of programs abstracted away from “real world GPU programs”, with the help of Caroline Col-

lange.
— Design a static analysis that would allow program optimisation.
The work can rely on previous work on symbolic range analysis for pointers in the Ph.D of Maroua Maalej [3].

Compared to state of the art array analysis [4, 1], the precision can be relaxed since we do not need any information
about the array content, but only information about addresses, hence array indices. Related work include the
polyhedral model’s tiling transformations [5, 2], able to perform similar transformations. The goal here is to use
abstract interpretation to get more widely applicable results.

Références

[1] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation functor for fully automatic
and scalable array content analysis. In Proceedings of the 38th ACM Symposium on Principles of Programming
Languages, pages 105–118. ACM, 2011.

[2] Guillaume Iooss. Detection of linear algebra operations in polyhedral programs. Theses, Université de Lyon ;
Colorado state university, July 2016.

[3] Maroua Maalej Kammoun. Low-cost memory analyses for efficient compilers. Theses, Université de Lyon,
September 2017.

[4] David Monniaux and Laure Gonnord. Cell morphing : From array programs to array-free horn clauses. In Xavier
Rival, editor, Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings, volume 9837 of Lecture Notes in Computer Science, pages 361–382. Springer, 2016.

[5] Jingling Xue. Loop Tiling for Parallelism. Kluwer, 2000.

2/2


